Newton–Euler equations

Newton–Euler equations

The Newton–Euler equations describe the combined translational and rotational dynamics of a rigid body.[1][2] [3][4][5] With respect to a coordinate frame whose origin coincides with the body's center of mass, they can be expressed in matrix form as:


\left(\begin{matrix} {\bold f} \\ {\boldsymbol \tau} \end{matrix}\right) =
\left(\begin{matrix} m {\bold I} & 0 \\ 0 & {\bold J}_c \end{matrix}\right)
\left(\begin{matrix} \ddot {\bold q} \\ \dot {\boldsymbol \omega} \end{matrix}\right) +
\left(\begin{matrix} 0 \\ {\boldsymbol \omega} \times {\bold J}_c \, {\boldsymbol \omega} \end{matrix}\right),

where

\mathbf{f} = total force acting on the center of mass
m = mass of the body
{\bold I} = the identity matrix
\ddot{\bold q} = acceleration of the center of mass
\boldsymbol \tau = total torque (or moment) acting about the center of mass
{\bold J}_c = moment of inertia about the center of mass
{\boldsymbol \omega} = angular velocity of the body

With respect to a coordinate frame that is not coincident with the center of mass, the equations assume the more complex form:


\left(\begin{matrix} {\bold f} \\ {\boldsymbol \tau} \end{matrix}\right) =
\left(\begin{matrix} m {\bold I} & - m [{\bold c}]\\ 
m [{\bold c}] & {\bold J}_c - m [{\bold c}][{\bold c}]\end{matrix}\right)
\left(\begin{matrix} \ddot {\bold q} \\ \dot {\boldsymbol \omega} \end{matrix}\right) +
\left(\begin{matrix} {m \boldsymbol \omega} \times \left({\boldsymbol \omega} \times {\bold c}\right) \\ 
{\boldsymbol \omega} \times ({\bold J}_c - m [{\bold c}][{\bold c}])\, {\boldsymbol \omega} \end{matrix}\right),

where \mathbf{c} is the location of the center of mass, and


[\mathbf{c}] \equiv 
\left(\begin{matrix} 0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0 \end{matrix}\right)

denotes a skew-symmetric cross product matrix.

The inertial terms are contained in the spatial inertia matrix


  \left(\begin{matrix} m {\bold I} & - m [{\bold c}]\\ 
  m [{\bold c}] & {\bold J}_c - m [{\bold c}][{\bold c}]\end{matrix}\right),

while the fictitious forces are contained in the term


  \left(\begin{matrix} {m \boldsymbol \omega} \times \left({\boldsymbol \omega} \times {\bold c}\right) \\ 
  {\boldsymbol \omega} \times ({\bold J}_c - m [{\bold c}][{\bold c}])\, {\boldsymbol \omega} \end{matrix}\right) .
[6]

When the center of mass is not coincident with the coordinate frame (that is, when {\bold c} is nonzero), the translational and angular accelerations (\ddot {\bold q} and \dot{\boldsymbol \omega}) are coupled, so that each is associated with force and torque components.

The Newton–Euler equations are used as the basis for more complicated "multi-body" formulations that describe the dynamics of systems of rigid bodies connected by joints and other constraints. Multi-body problems can be solved by a variety of numerical algorithms.[6][2][7]

References

  1. ^ Hubert Hahn (2002). Rigid Body Dynamics of Mechanisms. Springer. p. 143. ISBN 3540423737. http://books.google.com/books?id=MqrN3KY7o6MC&pg=PA143&dq=EUler+equations+%22rigid+body%22&lr=&as_brr=0&sig=ACfU3U00jfE08smw1IqJt69QdcMSKvDIeA. 
  2. ^ a b Ahmed A. Shabana (2001). Computational Dynamics. Wiley-Interscience. p. 379. ISBN 9780471371441. http://books.google.com/books?id=dGfcbOsm2PwC&pg=PA379&dq=EUler+equations+%22rigid+body%22&lr=&as_brr=0&sig=ACfU3U01BZBb84es37aiHVpdE33IdGze-A. 
  3. ^ Haruhiko Asada, Jean-Jacques E. Slotine (1986). Robot Analysis and Control. Wiley/IEEE. pp. §5.1.1, p. 94. ISBN 0471830291. http://books.google.com/books?id=KUG1VGkL3loC&pg=PA94&dq=EUler+equations+%22rigid+body%22&lr=&as_brr=0&sig=ACfU3U3LiZyQRj0zYXQ8ON2zwuiiwQO7dA. 
  4. ^ Robert H. Bishop (2007). Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling. CRC Press. pp. §7.4.1, §7.4.2. ISBN 0849392586. http://books.google.com/books?id=3UGQsi6VamwC&pg=PT104&dq=EUler+equations+%22rigid+body%22&lr=&as_brr=0&sig=ACfU3U1DtQ2BGV_Q34yAj-WhnQ4tStxPCw#PPT104,M1. 
  5. ^ Miguel A. Otaduy, Ming C. Lin (2006). High Fidelity Haptic Rendering. Morgan and Claypool Publishers. p. 24. ISBN 1598291149. http://books.google.com/books?id=lk0StvDRoEMC&pg=PA24&dq=EUler+equations+%22rigid+body%22&lr=&as_brr=0&sig=ACfU3U0iOPnq-nMrS34O40ZMt0EbJEqu6g#PPA24,M1. 
  6. ^ a b Roy Featherstone (2008). Rigid Body Dynamics Algorithms. Springer. ISBN 978-0-387-74314-1. http://books.google.ca/books?id=UjWbvqWaf6gC&printsec=frontcover&dq=Rigid+Body+Dynamics+Algorithms. 
  7. ^ Constantinos A. Balafoutis, Rajnikant V. Patel (1991). Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Approach. Springer. Chapter 5. ISBN 0792391454. http://books.google.com/books?id=7BcpyUjmLpUC&pg=PT195&dq=%22Kane%27s+dynamical+equations%22&lr=&as_brr=0&sig=ACfU3U1m290WlCUy1101Oj9Z9w3j5a4Lww#PPT151,M1. 

See also



Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Euler equations (fluid dynamics) — In fluid dynamics, the Euler equations govern inviscid flow. They correspond to the Navier Stokes equations with zero viscosity and heat conduction terms. They are usually written in the conservation form shown below to emphasize that they… …   Wikipedia

  • Isaac Newton — Sir Isaac Newton …   Wikipedia

  • NEWTON (I.) — L’œuvre de Newton constitue sans conteste le plus grand moment de la science moderne telle qu’elle s’est constituée après la Renaissance; elle couronne les travaux exceptionnellement riches d’une pléiade de mathématiciens et de physiciens de… …   Encyclopédie Universelle

  • Equations de Navier-Stokes — Équations de Navier Stokes Pour les articles homonymes, voir Stokes. En mécanique des fluides, les équations de Navier Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides dans l approximation des …   Wikipédia en Français

  • Équations de navier-stokes — Pour les articles homonymes, voir Stokes. En mécanique des fluides, les équations de Navier Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides dans l approximation des milieux continus. Elles… …   Wikipédia en Français

  • ÉQUATIONS ALGÉBRIQUES — Dès la plus haute antiquité, on rencontre, à l’occasion de problèmes concrets, des exemples de résolution d’équations du premier et du second degré, et, jusqu’au début du XIXe siècle, l’étude des équations constitue l’unique préoccupation des… …   Encyclopédie Universelle

  • Equations of motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Euler — Leonhard Euler « Euler » redirige ici. Pour les autres significations, voir Euler (homonymie). Leonhard Euler …   Wikipédia en Français

  • Newton's laws of motion — For other uses, see Laws of motion. Classical mechanics …   Wikipedia

  • Euler–Lagrange equation — In calculus of variations, the Euler–Lagrange equation, or Lagrange s equation is a differential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”