- Capillary action
Capillary action, capillarity, capillary motion, or wicking is the ability of a substance to draw another substance into it. The standard reference is to a tube in plants but can be seen readily with porous paper. It occurs when the adhesive
intermolecular force s between theliquid and a substance are stronger than the cohesive intermolecular forces inside the liquid. The effect causes a concavemeniscus to form where the substance is touching a vertical surface. The same effect is what causesporous materials such as sponges to soak up liquids.A common
apparatus used to demonstrate capillary action is the "capillary tube". When the lower end of a verticalglass tube is placed in a liquid such aswater , a concavemeniscus forms.Surface tension pulls the liquid column up until there is a sufficientmass of liquid forgravitational force s to overcome the intermolecular forces. Thecontact length (around the edge) between the liquid and the tube is proportional to the diameter of the tube, while the weight of the liquid column is proportional to the square of the tube'sdiameter , so a narrow tube will draw a liquid column higher than a wide tube. For example, aglass capillary tube 0.5 mm in diameter will lift approximately a 2.8 mm column of water.With some pairs of
materials , such as mercury and glass, the interatomic forces within the liquid exceed those between the solid and the liquid, so a convex meniscus forms and capillary action works in reverse.The term capillary flow is also used to describe the flow of carrier gas in a silica capillary column of a GC system. This flow can be calculated by Poiseuille's equation for compressible fluids.
Examples
In
hydrology , capillary action describes the attraction ofwater molecules tosoil particles. Capillary action is responsible for movinggroundwater from wet areas of the soil to dry areas. Differences in soil matric potential () drive capillary action in soil.Capillary action is also essential for the drainage of constantly produced tear fluid from the
eye . Two canalicula of tiny diameter are present in the inner corner of the eyelid, also called the lacrymal ducts; their openings can be seen with the naked eye within the lacrymal sacs when the eyelids are everted.Paper towel s absorb liquid through capillary action, allowing a fluid to be transferred from a surface to the towel. The small pores of a sponge act as small capillaries, causing it to absorb a comparatively large amount of fluid.Some old sport and exercise fabrics, such as
Coolmax , use capillary action to "wick" sweat away from the skin. These are often referred to as wicking fabrics, presumably after the capillary properties of acandle wick .Chemists utilize capillary action in
thin layer chromatography , in which a solvent moves vertically up a plate via capillary action. Dissolved solutes travel with the solvent at various speeds depending on their polarity.Capillary action is NOT responsible for water transport in plants. Instead cohesion between the water molecules and transpiration work together to draw up water.
Formula
With notes on the dimension in SI units, the height "h" of a liquid column (m) is given by:G.K. Batchelor, 'An Introduction To Fluid Dynamics', Cambridge University Press (1967) ISBN 0521663962]
::
where:
:* is the liquid-air
surface tension (J/m² or N/m):*"θ" is thecontact angle :*"ρ" is thedensity of liquid (kg/m3):*"g" isacceleration due togravity (m/s²):*"r" isradius of tube (m).For a water-filled glass tube in
air atsea level ,:"" is 0.0728 J/m² at 20 °C:"θ" is 20° (0.35 rad):"ρ" is 1000 kg/m3:"g" is 9.8 m/s²
therefore, the height of the water column is given by:
:.Thus for a 2 m wide (1 m radius) tube, the water would rise an unnoticeable 0.014 mm. However, for a 2 cm wide (0.01 m radius) tube, the water would rise 1.4 mm, and for a 0.2 mm wide (0.0001 m radius) tube, the water would rise 140 mm (about 5.5
inch es).Miscellaneous
Albert Einstein 's first paper [ [http://www.einstein-website.de/z_physics/wisspub-e.html List of Scientific Publications of Albert Einstein] ] submitted toAnnalen der Physik was on capillarity. It was titled "Folgerungen aus den Capillaritätserscheinungen", which translates as "Conclusions from the capillarity phenomena", found in volume 4, page 513. [ [http://www.physik.uni-augsburg.de/annalen/history/papers/1901_4_513-523.pdf Folgerungen aus den Capillaritätserscheinungen] (in German)] It was submitted in late 1900 and was published in 1901. In 1905 Einstein published four seminal papers in the same journal; these four papers are known as theAnnus Mirabilis Papers .ee also
*
Frost flowers
*Washburn's equation
*Wick effect
*Capillary fringe
*Capillary wave References
Wikimedia Foundation. 2010.