- Binary translation
In
computing , binary translation is theemulation of oneinstruction set by another through translation of code. Sequences of instructions are translated from the "source" to the "target" instruction set.There is "static" binary translation, where an entire
executable file is translated into an executable of the target architecture. This is very difficult to do correctly, since not all the code can be discovered by the translator. For example, some parts of the executable may be reachable only throughindirect branch es, whose value is only known at run-time.Alternatively, "dynamic" translation looks at a short sequence of code, typically on the order of a single
basic block , translates it and caches the resulting sequence. Code is only translated as it is discovered and when possible, branch instructions are made to point to translated code.Dynamic binary translation differs from simple emulation eliminating the emulator's main read-decode-execute loop (a major performance bottleneck), paying for this by large overhead during translation time. This overhead is hopefully amortized as translated code sequences are executed multiple times.
More advanced dynamic translators employ
dynamic recompilation : the translated code is instrumented to find out what portions are executed a large number of times, and these portions are optimized aggressively. This technique is reminiscent of aJIT compiler , and in fact such compilers (e.g. Sun's HotSpot technology) can be viewed as dynamic translators from a virtual instruction set (thebytecode ) to a real one.*
Apple Computer implemented a dynamic translatingemulator for M68K code in theirPowerPC line of Macintoshes, which achieved a very high level of reliability, performance and compatibility (seeMac 68K emulator ). This allowed Apple to bring the machines to market with only a partially nativeoperating system , and end users could adopt the new, faster architecture without risking their investment in software. Partly because the emulator was so successful, many parts of the operating system remained emulated. A full transition to a PowerPC nativeoperating system (OS) was not made until the release ofMac OS X (10.0) in 2001, and within this new OS the "Classic" runtime environment still offers the emulation capability on PowerPC Macs. Also, the Rosetta translation layer included in releases of Mac OS 10.4 for Intel-based Macs, which is used to ease the transition from the PPC to x86, is an example of dynamic translation. Developed for Apple by Transitive, the Rosetta software is an implementation of Transitive'sQuickTransit solution, which can be used to dynamically translate between platforms that include SPARC, PowerPC, MIPS, Itanium and x86.* DEC achieved similar success with its translation tools to help users migrate from the CISC
VAX architecture to theDEC Alpha RISC architecture.* DEC created
FX!32 binary translator for convertingX86 CPU applications toDEC Alpha applications.* In March 2006
Intel had announced plans to support Transitive Binary Translator on their future Itanium and Xeon CPU.* Sun and
IBM are also utilizing QuickTransit by Transitive.SPARC →x86 in Sun's case and x86→Power Architecture in IBM's. The latter is called PowerVM Lx86.* In January 2000,
Transmeta Corporation announced a novel processor design namedCrusoe . From the [http://www.transmeta.com/crusoe/faq.html FAQ] on their web site, "The smart microprocessor consists of a hardwareVLIW core as its engine and a software layer called Code Morphing software. The Code Morphing software acts as a shell ... morphing or translatingx86 instructions to native Crusoe instructions. In addition, the Code Morphing software contains a dynamic compiler and code optimizer ... The result is increased performance at the least amount of power. ... [This] allows Transmeta to evolve the VLIW hardware and Code Morphing software separately without affecting the huge base of software applications." More info at [http://www.arstechnica.com/cpu/1q00/crusoe/crusoe-1.html arstechnica] , [http://www.geek.com/procspec/features/transmeta/crusoe.htm geek.com] .See also
*
Just-in-time compilation
*Virtual machine
*Emulator
*Comparison of virtual machines External links
* http://www.transitive.com
* http://www.serverpipeline.com/181501677 - Future Intel Itanium and Xeon CPU will be designed to support Transitive Binary Translator.
* http://bellard.org/qemu/
* http://www.itee.uq.edu.au/~csmweb/decompilation/bintrans.html (somewhat dated)
* http://www.gtoal.com/sbt/ Static Binary Translation HOWTO
* http://www.itee.uq.edu.au/~cristina/uqbt.html University of Queensland Binary Translator
* http://www.experimentalstuff.com/Technologies/Walkabout/ Walkabout - Binary Translation research by Sun and University collaborators
* http://csdl.computer.org/comp/mags/mi/1998/02/m2056abs.htm -FX!32 DEC binary translator fromX86 CPU applications toDEC Alpha CPU applications.
Wikimedia Foundation. 2010.