- Trudinger's theorem
-
In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser).
It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a function. The inequality is a limiting case of Sobolev imbedding and can be stated as the following theorem:
Let Ω be a bounded domain in satisfying the cone condition. Let mp = n and p > 1. Set
Then there exists the imbedding
where
The space
- LA(Ω)
is an example of an Orlicz space.
References
- Moser, J. (1971), "A Sharp form of an Inequality by N. Trudinger", Indiana Univ. Math. 20: 1077–1092.
- Trudinger, N. S. (1967), "On imbeddings into Orlicz spaces and some applications", J. Math. Mech. 17: 473–483.
Categories:- Sobolev spaces
- Inequalities
- Theorems in analysis
Wikimedia Foundation. 2010.