Lefschetz zeta function

Lefschetz zeta function

In mathematics, the Lefschetz zeta-function is a tool used in topological periodic and fixed point theory, and dynamical systems. Given a mapping "f", the zeta-function is defined as the formal series:zeta_f(z) = exp left( sum_{n=0}^infty L(f^n) frac{z^n}{n} ight), where "L(fn)" is the Lefschetz number of the "n"th iterate of "f". This zeta-function is of note in topological periodic point theory because it is a single invariant containing information about all iterates of "f".

Examples

For example, consider as space the unit circle, and let "f" be its reflection in the "x"-axis, or in other words θ → −θ. Then "f" has Lefschetz number 0, and "f"2 is the identity map, which has Lefschetz number 2. Therefore we need

:exp(2Σ "t"2"n"/2"n")

which by considering

:log (1 − "t") + log (1 + "t")

or otherwise is seen to be

:1/(1 − "t"2).

A dull example: the identity map on "X" has Lefschetz zeta function

:1/(1 − "t")χ(X),

where χ(X) is the Euler characteristic of "X", i.e., the Lefschetz number of the identity map.

Connections

This generating function is essentially an algebraic form of the Artin-Mazur zeta-function, which gives geometric information about the fixed and periodic points of "f".

ee also

*Lefschetz fixed point theorem
*Artin-Mazur zeta-function

References

*cite arXiv | author=Felshtyn, A. | title= Dynamical Zeta-Functions, Nielsen Theory and Reidemeister Torsion | year = 1996 | eprint=chao-dyn/9603017


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Zeta function — A zeta function is a function which is composed of an infinite sum of powers, that is, which may be written as a Dirichlet series::zeta(s) = sum {k=1}^{infty}f(k)^s Examples There are a number of mathematical functions with the name zeta function …   Wikipedia

  • Artin-Mazur zeta function — In mathematics, the Artin Mazur zeta function is a tool for studying the iterated functions that occur in dynamical systems and fractals.It is defined as the formal power series :zeta f(z)=exp sum {n=1}^infty extrm{card} left( extrm{Fix} (f^n)… …   Wikipedia

  • Lefschetz fixed-point theorem — In mathematics, the Lefschetz fixed point theorem is a formula that counts the number of fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X . It …   Wikipedia

  • Fonction zêta — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. La fonction zêta (d après la lettre grecque zêta, ou ζ) est le nom de nombreuses fonctions en mathématiques. La plus connue est la fonction zêta de… …   Wikipédia en Français

  • Función zeta local — En la teoría de números, una función zeta local Z(t) es una función cuya derivada logarítmica es una función generatriz del número de soluciones de un conjunto de ecuaciones definidas sobre un cuerpo finito F, en extensión de cuerpos Fk de F.… …   Wikipedia Español

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Дзета-функции — Эта страница информационный список. См. также основную статью: Дзета функция Римана В математике дзета функция обычно это функция родственная или аналогичная дзета функции Римана …   Википедия

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • Weil conjectures — In mathematics, the Weil conjectures, which had become theorems by 1974, were some highly influential proposals from the late 1940s by André Weil on the generating functions (known as local zeta functions) derived from counting the number of… …   Wikipedia

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”