- Prime reciprocal magic square
A prime reciprocal magic square is a
magic square using the digits of the reciprocal of aprime number .Consider a
number divided into one, like 1/3 or 1/7. In base ten, the remainder, and so the digits, of 1/3 repeats at once: 0·3333... However, the remainders of 1/7 repeat over six, or 7-1, digits: 1/7 = 0·142857142857142857... If you examine the multiples of 1/7, you can see that each is acyclic permutation of these six digits:1/7 = 0·1 4 2 8 5 7... 2/7 = 0·2 8 5 7 1 4... 3/7 = 0·4 2 8 5 7 1... 4/7 = 0·5 7 1 4 2 8... 5/7 = 0·7 1 4 2 8 5... 6/7 = 0·8 5 7 1 4 2...
If the digits are laid out as a square, it is obvious that each row will sum to 1+4+2+8+5+7, or 27, and only slightly less obvious that each column will also do so, and consequently we have a magic square:
1 4 2 8 5 7 2 8 5 7 1 4 4 2 8 5 7 1 5 7 1 4 2 8 7 1 4 2 8 5 8 5 7 1 4 2
However, neither diagonal sums to 27, but all other prime reciprocals in base ten with maximum period of p-1 produce squares in which all rows and columns sum to the same total. In the square from 1/19, with maximum period 18 and row-and-column total of 81, both diagonals also sum to 81, and this square is therefore fully magic:
01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1... 02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2... 03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3... 04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4... 05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5... 06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6... 07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7... 08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8... 09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9... 10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0... 11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1... 12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2... 13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3... 14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4... 15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5... 16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6... 17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7... 18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...
The same phenomenon occurs with other primes in other bases, and the following table lists some of them, giving the prime, base, and magic total (derived from the formula base-1 x prime-1 / 2):
ee also
*
cyclic number
Wikimedia Foundation. 2010.