- Hot cathode
:"Hot cathode" is also a name for a
hot filament ionization gauge , a vacuum measuring device.In
vacuum tube s, a hot cathode is acathode electrode which emitselectron s due tothermionic emission . ("Cf."cold cathode s, wherefield emission is used and which do not require heating.) The heating element is usually anelectrical filament . Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area.Hot cathodes are the main source of electrons in
electron gun s incathode ray tube s,electron microscope s,vacuum tube s, and in somefluorescent lamp s.Principles and Variants
Hot cathodes may be either directly heated, where the filament itself is the source of electrons, or indirectly heated, where the filament is electrically insulated from the cathode; this configuration minimizes the introduction of hum when the filament is energized with
alternating current . The filament is most often made oftungsten . With indirectly heated cathodes, the filament is usually called the "heater" instead. The cathode for indirectly heating is usually realized as a nickel tube which surrounds the heater.The cathode is typically covered with an emissive layer, made of a material with lower
work function , which emits electrons more easily than bare tungsten metal, reducing the necessary temperature and lowering the emission of metal ions. Cathodes can be made of puresintered tungsten as well; tungsten cathodes in the shape of aparabolic lens are used inelectron beam furnace s.Thorium can be added to tungsten to increase its emissivity, due to its lower work function. Some cathodes are made oftantalum .Oxide-coated cathodes
A common type is an oxide-coated cathode. The earliest material used was
barium oxide ; it forms a monoatomic layer ofbarium with an extremely low work function. More modern formulations utilize a mixture of barium oxide,strontium oxide andcalcium oxide . Another standard formulation is barium oxide, calcium oxide, andaluminium oxide in a 5:3:2 ratio.Thorium oxide is used as well. Oxide-coated cathodes operate at about 800-1000 °C, orange-hot. They are used in most small glass vacuum tubes, but are rarely used in high-power tubes since they are vulnerable to high voltages and oxygen ions, and undergo rapid degradation under such conditions. [ [http://www.lamptech.co.uk/Documents/M8G%20MA%20Electrodes.htm] ]For manufacturing convenience, the oxide-coated cathodes are usually coated with
carbonate s, which are then converted to oxides by heating, and then the metal monolayer is formed in a process called electrode activation. The activation may be achieved by microwave heating, direct electric current heating, or electron bombardment while the tube is on the exhausting machine, until the production of gases ceases. The purity of cathode materials is crucial for tube lifetime. [ [http://www.transfixr.com/strafe_tube.htm] ]Thorium alternatives
Due to concerns about thorium radioactivity and toxicity, efforts have been made to find alternatives. One of them is zirconiated tungsten, where
zirconium dioxide is used instead of thorium dioxide. Other replacement materials arelanthanum(III) oxide ,yttrium(III) oxide ,cerium(IV) oxide , and their mixtures. [ [http://www.freepatentsonline.com/5911919.html] ]Boride cathodes
Lanthanum hexaboride (LaB6) andcerium hexaboride (CeB6) are used as the coating of some high-current cathodes. Hexaborides show low work function, around 2.5 eV. They are also resistant to poisoning. Cerium boride cathodes show lower evaporation rate at 1700 K than lanthanum boride, but it becomes equal at 1850 K and higher. Cerium boride cathodes have one and a half times the lifetime of lanthanum boride, due to its higher resistance to carbon contamination. Boride cathodes are about ten times as "bright" as the tungsten ones and have 10-15 times longer lifetime. They are used eg. inelectron microscope s,microwave tube s,electron lithography ,electron beam welding ,X-Ray tube s, andfree electron laser s. However these materials tend to be expensive.Other hexaborides can be employed as well; examples are
calcium hexaboride ,strontium hexaboride ,barium hexaboride ,yttrium hexaboride ,gadolinium hexaboride ,samarium hexaboride , andthorium hexaboride .Thoriated filaments
Thoriated filaments are another option. A small amount of
thorium is added to the tungsten of the filament. The filament is heated white-hot, at about 2400 °C, and thorium atoms migrate to the surface of the filament and form the emissive layer. Thoriated filaments can have very long lifetimes and are resistant to high voltages. They are used in nearly all big high-power vacuum tubes for radio transmitters, and in some tubes for hi-fi amplifiers. Their lifetimes tend to be longer than those of oxide cathodes. [ [http://userweb.suscom.net/~mos/knowledgebase/tp2.htm] ]Other materials
In addition to the listed oxides and borides, other materials can be used as well. Some examples are
carbide s andboride s oftransition metal s, e.g.zirconium carbide ,hafnium carbide ,tantalum carbide ,hafnium diboride , and their mixtures. Metals from groups IIIB (scandium ,yttrium , and somelanthanide s, oftengadolinium andsamarium ) and IVB (hafnium ,zirconium ,titanium ) are usually chosen. [ [http://www.freepatentsonline.com/5911919.html] ]In addition to tungsten, other
refractory metal s and alloys can be used, e.g.tantalum ,molybdenum andrhenium and their alloys.A
barrier layer of other material can be placed between the base metal and the emission layer, to inhibit chemical reaction between these. The material has to be resistant to high temperatures, have high melting point and very low vapor pressure, and be electrically conductive. Materials used can be e.g.tantalum diboride ,titanium diboride ,zirconium diboride ,niobium diboride ,tantalum carbide ,zirconium carbide ,tantalum nitride , andzirconium nitride . [ [http://www.freepatentsonline.com/4137476.html] ]Failure modes
The emissive layers degrade slowly with time, and much quicker when the cathode is overloaded with too high current. The result is weakened emission and diminished power of the tubes, or brightness of the CRTs, affected.
The activated electrodes can be destroyed by contact with
oxygen or other chemicals (eg.aluminium , orsilicate s), either present as residual gases, entering the tube via leaks, or released byoutgassing or migration from the construction elements. This results in diminished emissivity. This process is known as cathode poisoning. High-reliability tubes had to be developed for the early Whirlwind computer, with filaments free of traces ofsilicon .Slow degradation of the emissive layer and sudden burning and interruption of the filament are two main
failure mode s of vacuum tubes.ee also
*
Black layer References
Wikimedia Foundation. 2010.