- List of numbers
This is a

**list of articles about**("not" aboutnumber snumeral s).Rational number s**Notable rational numbers**Natural number s* There is no consistent and widely accepted way to extend cardinals beyond

centillion (centilliard ).**Proposed systematic names for powers of 10****Gillion system**As proposed by

Russ Rowlett , based on Greek-derivednumerical prefix es: |**SI-derived**Transcendental number s*

Khinchin-Lévy constant : 1.186 569 110 4... [*http://mathworld.wolfram.com/Khinchin-LevyConstant.html*]

*Euler's number : e = 2.718 281 828 459 045 235 360 287 471 353 ...

*Pi : π = 3.141 592 653 589 793 238 462 643 383 279 ...**uspected transcendentals***

Euler-Mascheroni constant : γ = 0.577 215 664 901 532 860 606 512 090 082 ...

*Gauss-Kuzmin-Wirsing constant : 0.303 663 002 9... [*http://mathworld.wolfram.com/Gauss-Kuzmin-WirsingConstant.html*]

*Laplace limit : ε=0.662 743 419 3... [*http://mathworld.wolfram.com/LaplaceLimit.html*]

*Khinchin's constant : 2.685 452 001... [*http://mathworld.wolfram.com/KhinchinsConstant.html*]

*Feigenbaum constant s: δ = 4.6692 ... and α = 2.5029 ...**Numbers not known with high precision**Grothendieck constant : between 1.67 and 1.79Hypercomplex number s**Algebraic**complex number s*

Imaginary unit : $i\; =\; sqrt\{-1\}$**Other hypercomplex numbers*** The

quaternion s

* Theoctonion s

* Thesedenion s

* Thedual number s (with aninfinitesimal )Transfinite number s*

Infinity in general: $infty$

*Aleph-null : $aleph\_0$

*Aleph-one : $aleph\_1$

*Beth-one : ($eth\_1$) is thecardinality of the continuum: $2^\{aleph\_0\}$**Numbers representing measured quantities***

Pair : 2 (the base of thebinary numeral system )

*Dozen : 12 (the base of theduodecimal numeral system)

*Baker's dozen : 13

* Score: 20 (the base of thevigesimal numeral system)

* Gross: 144 (= 12^{2})

*Great gross : 1728 (= 12^{3})

*Avogadro's number : N_{A}= $6.022...\; imes\; 10^\{23\}$**Numbers without specific values****Bases*** Base -3 (negaternary)

* Base -2 (negabinary)

* Base 1 (unary)

*Base 2 (binary)

*Base 3 (ternary ortrinary , see alsobalanced ternary )

*Base 4 (quaternary)

*Base 5 (quinary )

*Base 6 (senary orheximal )

*Base 7 (septenary )

*Base 8 (octal )

*Base 9 (nonary )

*Base 10 (decimal )

*Base 12 (duodecimal ordozenal )

*Base 13 (tridecimal ortredecimal )

*Base 16 (hexadecimal )

*Base 20 (vigesimal )

*Base 24 (quadrovigesimal )

*Base 26 (hexavigesimal )

*Base 27 (septemvigesimal )

*Base 30 (trigesimal )

*Base 32 (duotrigesimal )

*Base 36 (hexatridecimal ,sexatrigesimal orhexatrigesimal )

*Base 60 (sexagesimal )

*Base 64 (quadrosexagesimal )

*mixed radix

* Base φ (phinary )

*Base 2i (quater-imaginary)See also "positional systems" ofnumeral system for bases which might not be listed here.**ee also**

*English-language numerals

*Numbers in various languages

*Floating point

*Fraction (mathematics)

*Interesting number paradox

*Large number

*List of prime numbers

*Mathematical constant

*Names of large numbers

*Negative number

*Number names

*Orders of magnitude (numbers)

*Ordinal number

*SI prefix

*Small number

*Surreal number

*Table of prime factors **Further reading*** "Kingdom of Infinite Number: A Field Guide" by Bryan Bunch, W.H. Freeman & Company, 2001. ISBN 0-7167-4447-3

**External links*** [

*http://www.archimedes-lab.org/numbers/Num1_69.html What's Special About This Number? A Zoology of Numbers: from 0 to 500*]

* [*http://www.mathcats.com/explore/reallybignumbers.html See how to write big numbers*]

* [*http://www.kokogiak.com/megapenny/ The MegaPenny Project - Visualizing big numbers*]

* [*http://pages.prodigy.net/jhonig/bignum/indx.html About big numbers*]

* [*http://home.earthlink.net/~mrob/pub/math/largenum.html Robert P. Munafo's Large Numbers page*]

* [*http://www-users.cs.york.ac.uk/~susan/cyc/b/big.htm Different notations for big numbers - by Susan Stepney*]

* [*http://www.unc.edu/~rowlett/units/large.html Names for Large Numbers*] , in "How Many? A Dictionary of Units of Measurement" by Russ Rowlett

* [*http://www.stetson.edu/~efriedma/numbers.html What's Special About This Number?*] (from 0 to 9999)

*Wikimedia Foundation.
2010.*