Martingale central limit theorem
- Martingale central limit theorem
-
In probability theory, the central limit theorem says that, under certain conditions, the sum of many independent identically-distributed random variables, when scaled appropriately, converges in distribution to a standard normal distribution. The martingale central limit theorem generalizes this result for random variables to martingales, which are stochastic processes where the change in the value of the process from time t to time t + 1 has expectation zero, even conditioned on previous outcomes.
Statement
Here is a simple version of the martingale central limit theorem: Let
- -- be a martingale with bounded increments, i.e., suppose
and
almost surely for some fixed bound k and all t. Also assume that almost surely.
Define
and let
Then
converges in distribution to the normal distribution with mean 0 and variance 1 as . More explicitly,
References
Many other variants on the martingale central limit theorem can be found in:
- Hall, Peter; and C. C. Heyde (1980). Martingale Limit Theory and Its Application. New York: Academic Press. ISBN 0-12-319350-8.
- For the discussion of Theorem 5.4 there, and correct form of Corollary 5.3(ii), see Bradley, Richard (1988). "On some results of MI Gordin: a clarification of a misunderstanding". Journal of Theoretical Probability (Springer) 1 (2): 115–119. doi:10.1007/BF01046930.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Central limit theorem — This figure demonstrates the central limit theorem. The sample means are generated using a random number generator, which draws numbers between 1 and 100 from a uniform probability distribution. It illustrates that increasing sample sizes result… … Wikipedia
Martingale (probability theory) — For the martingale betting strategy , see martingale (betting system). Stopped Brownian motion is an example of a martingale. It can be used to model an even coin toss betting game with the possibility of bankruptcy. In probability theory, a… … Wikipedia
Théorème central limite — Pour les articles homonymes, voir TCL. La loi normale, souvent appelée la « courbe en cloche » Le théorème central li … Wikipédia en Français
Doob martingale — A Doob martingale (also known as a Levy martingale) is a mathematical construction of a stochastic process which approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as… … Wikipedia
List of probability topics — This is a list of probability topics, by Wikipedia page. It overlaps with the (alphabetical) list of statistical topics. There are also the list of probabilists and list of statisticians.General aspects*Probability *Randomness, Pseudorandomness,… … Wikipedia
List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… … Wikipedia
Outline of probability — Probability is the likelihood or chance that something is the case or will happen. Probability theory is used extensively in statistics, mathematics, science and philosophy to draw conclusions about the likelihood of potential events and the… … Wikipedia
probability theory — Math., Statistics. the theory of analyzing and making statements concerning the probability of the occurrence of uncertain events. Cf. probability (def. 4). [1830 40] * * * Branch of mathematics that deals with analysis of random events.… … Universalium
List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… … Wikipedia
List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… … Wikipedia