Itō's lemma

Itō's lemma

In mathematics, Itō's lemma is used in Itō stochastic calculus to find the differential of a function of a particular type of stochastic process. It is the stochastic calculus counterpart of the chain rule in ordinary calculus and is best memorized using the Taylor series expansion and retaining the second order term related to the stochastic component change. The lemma is widely employed in mathematical finance.

Itō processes

In its simplest form, Itō's lemma states that for an Itō process: dX_t= sigma_t,dB_t + mu_t,dtand any twice continuously differentiable function "f" on the real numbers, then "f"("X") is also an Itō process satisfying:egin{align}df(X_t) &= f^prime(X_t),dX_t + frac{1}{2}f^{primeprime}(X_t)sigma^2_t,dt\&= f^prime(X_t)sigma_t,dB_t + left(f^prime(X_t)mu_t+frac{1}{2}f^{primeprime}(X_t)sigma^2_t ight),dt.end{align}

Or, more extended. Let "X"("t") be an Itô process given by : dX_t=mu_t,dt + sigma_t,dB_t,and let "f"("t","x") be a function with continuous first- and second-order partial derivatives:dot{f}(t,x)=frac{partial f(t,x)}{partial t},quad f'(t,x)=frac{partial f(t,x)}{partial x},quad f"(t,x)=frac{partial^2f(t,x)}{partial x^2}.Then by Itô's lemma::egin{align}df(t,X_t)&=dot{f}(t,X_t),dt+f'(t,X_t),dX_t+frac{1}{2}f"(t,X_t)sigma^2_t,dt,\&=dot{f}(t,X_t),dt+f'(t,X_t)(mu_t,dt + sigma_t,dB_t)+frac{1}{2}f"(t,X_t)sigma^2_t,dt,quadmbox{rearranging terms}\&=left(dot{f}(t,X_t)+mu_tf'(t,X_t)+frac{sigma_t^2}{2}f"(t,X_t) ight)dt+f'(t,X_t)sigma_t,dB_tend{align}

Continuous semimartingales

More generally, Itō's lemma applies for any continuous "d"-dimensional semimartingale "X"=("X"1,"X"2,…,"X""d"), and twice continuously differentiable and real valued function "f" on R"d". Then, "f"("X") is a semimartingale satisfying:df(X_t) = sum_{i=1}^d f_{,i}(X_t),dX^i_t + frac{1}{2}sum_{i,j=1}^df_{,ij}(X_t),d [X^i,X^j] _t.In this expression, the term "f","i" represents the partial derivative of "f"("x") with respect to "x""i", and ["X""i","X""j" ] is the quadratic covariation process of "X""i" and "X""j".

Non-continuous semimartingales

Itō's lemma can also be applied to general "d"-dimensional semimartingales, which need not be continuous. In general, a semimartingale is a cadlag process, and an additional term needs to be added to the formula to ensure that the jumps of the process are correctly given by Itō's lemma.For any cadlag process "Yt", the left limit in "t" is denoted by "Yt-", which is a left-continuous process. The jumps are written as Δ"Yt" = "Yt" - "Yt-". Then, Itō's lemma states that if "X" = ("X"1,"X"2,…,"Xd") is a "d"-dimensional semimartingale and "f" is a twice continuously differentiable real valued function on R"d" then "f"("X") is a semimartingale, and

:egin{align}f(X_t)= & f(X_0)+sum_{i=1}^dint_0^t f_{,i}(X_{s-}),dX^i_s + frac{1}{2}sum_{i,j=1}^d int_0^t f_{,ij}(X_{s-}),d [X^i,X^j] _s\&+sum_{sle t}left(Delta f(X_s)-sum_{i=1}^df_{,i}(X_{s-})Delta X^i_s-frac{1}{2}sum_{i,j=1}^d f_{,ij}(X_{s-})Delta X^i_sDelta X^j_s ight).end{align}

This differs from the formula for continuous semimartingales by the additional term summing over the jumps of "X", which ensures that the jump of the right hand side at time "t" is Δ"f"("Xt").

Informal derivation

A formal proof of the lemma requires us to take the limit of a sequence of random variables, which is not done here. Instead, we can derive Ito's lemma by expanding a Taylor series and applying the rules of stochastic calculus.

Assume the Itō process is in the form of: dx= a,dt + b,dB.!

Expanding "f"("x", "t") in a Taylor series in "x" and "t" we have

: df = frac{partial f}{partial x},dx + frac{partial f}{partial t},dt + frac{1}{2}frac{partial^2 f}{partial x^2},dx^2 + cdots

and substituting "a dt" + "b dB" for "dx" gives

: df = frac{partial f}{partial x}(a,dt + b,dB) + frac{partial f}{partial t},dt + frac{1}{2}frac{partial^2 f}{partial x^2}(a^2,dt^2 + 2ab,dt,dB + b^2,dB^2) + ldots.

In the limit as "dt" tends to 0, the "dt"2 and "dt dB" terms disappear but the "dB"2 term tends to "dt". The latter can be shown if we prove that

: dB^2 ightarrow E(dB^2), since E(dB^2) = dt. ,

The proof of this statistical property is however beyond the scope of this article.

Deleting the "dt"2 and "dt dB" terms, substituting "dt" for "dB"2, and collecting the "dt" and "dB" terms, we obtain

: df = left(afrac{partial f}{partial x} + frac{partial f}{partial t} + frac{1}{2}b^2frac{partial^2 f}{partial x^2} ight)dt + bfrac{partial f}{partial x},dB as required.

The formal proof is beyond the scope of this article.

Examples

Geometric Brownian motion

A process S is said to follow a geometric Brownian motion with volatility "σ" and drift "μ" if it satisfies the stochastic differential equation "dS" = "S"("σdB" + "μdt"), for a Brownian motion "B".Applying Itō's lemma with "f"("S") = log("S") gives:egin{align}dlog(S) &= f^prime(S),dS + frac{1}{2}f^{primeprime}(S)S^2sigma^2,dt \&= frac{1}{S}left( sigma S,dB + mu S,dt ight) - frac{1}{2}sigma^2,dt \&= sigma,dB +(mu-sigma^2/2),dt.end{align}It follows that log("St") = log("S"0) + "σBt" + ("μ" - "σ"2/2)"t", and exponentiating gives the expression for "S",:S_t=S_0expleft(sigma B_t+(mu-sigma^2/2)t ight).

The Doléans exponential

The Doléans exponential (or stochastic exponential) of a continuous semimartingale "X" is defined to be the solution to the SDE "dY" = "YdX" with initial condition "Y"0 = 1. It is sometimes denoted by unicode|Ɛ("X").Applying Itō's lemma with "f"("Y")=log("Y") gives:egin{align}dlog(Y) &= frac{1}{Y},dY -frac{1}{2Y^2},d [Y] \&= dX - frac{1}{2},d [X] .end{align}Exponentiating gives the solution:Y_t = expleft(X_t-X_0- [X] _t/2 ight).

Black–Scholes formula

Itō's lemma can be used to derive the Black–Scholes formula for an option. Suppose a stock price follows a Geometric Brownian motion given by the stochastic differential equation "dS" = "S"("σdB" + "μdt").Then, if the value of an option at time "t" is "f"("t","S""t"), Itō's lemma gives:df(t,S_t) = left(frac{partial f}{partial t} + frac{1}{2}left(S_tsigma ight)^2frac{partial^2 f}{partial S^2} ight),dt +frac{partial f}{partial S},dS_t.

The term (∂"f"/∂"S") "dS" represents the change in value in time "dt" of the trading strategy consisting of holding an amount ∂"f"/∂"S" of the stock. If this trading strategy is followed, and any cash held is assumed to grow at the risk free rate "r", then the total value "V" of this portfolio satisfies the SDE: dV_t = rleft(V_t-frac{partial f}{partial S}S_t ight),dt + frac{partial f}{partial S},dS_t.This strategy replicates the option if "V" = "f"("t","S").Combining these equations gives the Black-Scholes formula:frac{partial f}{partial t} + frac{1}{2}sigma^2S^2frac{partial^2 f}{partial S^2} + rSfrac{partial f}{partial S}-rf = 0.

ee also

*Wiener process
*Itō calculus

References

*Kiyoshi Itō (1951). On stochastic differential equations. "Memoirs, American Mathematical Society" 4, 1–51.
*Hagen Kleinert (2004). "Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets", 4th edition, World Scientific (Singapore); Paperback ISBN 981-238-107-4. Also available online: [http://www.physik.fu-berlin.de/~kleinert/b5 PDF-files] . This textbook also derives generalizations of Itō's lemma for non-Wiener (non-Gaussian) processes.
*Bernt Øksendal (2000). "Stochastic Differential Equations. An Introduction with Applications", 5th edition, corrected 2nd printing. Springer. ISBN 3-540-63720-6. Sections 4.1 and 4.2.

External links

* [http://www2.sjsu.edu/faculty/watkins/ito.htm Derivation] , Prof. Thayer Watkins
* [http://www.quantnotes.com/fundamentals/backgroundmaths/ito.htm Discussion] , quantnotes.com
* [http://www.ftsmodules.com/public/texts/optiontutor/chap6.8.htm Informal proof] , optiontutor


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Itō calculus — Itō calculus, named after Kiyoshi Itō, extends the methods of calculus to stochastic processes such as Brownian motion (Wiener process). It has important applications in mathematical finance and stochastic differential equations.The central… …   Wikipedia

  • Itō — Family name name = Itō imagesize= caption= pronunciation = Itō meaning = region = Japan language = Japanese related names = search = Ito footnotes = [ [http://www.census.gov/genealogy/names/names files.html 1990 Census Name Files ] ] Itō (伊藤) is… …   Wikipedia

  • Itō diffusion — In mathematics mdash; specifically, in stochastic analysis mdash; an Itō diffusion is a solution to a specific type of stochastic differential equation. Itō diffusions are named after the Japanese mathematician Kiyoshi Itō.OverviewA (time… …   Wikipedia

  • Ito — Itō ist der Name folgender Orte: Itō (Shizuoka), einer japanische Großstadt in der Präfektur Shizuoka Itō (üblicherweise als 伊藤 geschrieben) ist der Familienname folgender Personen: Ayuko Itō (* 1989), japanische Shorttrackerin Daiki Itō (* 1985) …   Deutsch Wikipedia

  • Ito Kiyoshi — Itō Kiyoshi an der Cornell University, 1970 Itō Kiyoshi (jap. 伊藤 清; * 7. September 1915 in Hokusei chō (heute Inabe), Präfektur Mie; † 10. November 2008 in Kyōto) war ein japanischer …   Deutsch Wikipedia

  • Itō — Ito bezeichnet: Ito (Staat), einen japanischen Staat im Altertum Itō ist der Name folgender Orte: Itō (Shizuoka), einer japanische Großstadt in der Präfektur Shizuoka Itō (üblicherweise als 伊藤 geschrieben) ist der Familienname folgender Personen …   Deutsch Wikipedia

  • Itō Kiyoshi — an der Cornell University, 1970 Itō Kiyoshi (jap. 伊藤 清; * 7. September 1915 in Hokusei chō (heute Inabe), Präfektur Mie; † 10. November 2008 in Kyōto) war ein japanischer …   Deutsch Wikipedia

  • Lemma von Ito — Das Lemma von Itō (auch Itō Formel), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. Es ist die Kettenregel aus der Differentialrechnung für stochastische Prozesse. Voraussetzung… …   Deutsch Wikipedia

  • Lemma von Itô — Das Lemma von Itō (auch Itō Formel), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. Es ist die Kettenregel aus der Differentialrechnung für stochastische Prozesse. Voraussetzung… …   Deutsch Wikipedia

  • Lemma von Itō — Das Lemma von Itō (auch Itō Formel), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. Es ist die Kettenregel aus der Differentialrechnung für stochastische Prozesse.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”