- Boiler explosion
Boiler explosions are catastrophic failures of
boiler s. As seen today, boiler explosions are of two kinds. One kind is over-pressure in the pressure parts of thesteam andwater sides. The second kind is explosion in thefurnace . Boiler explosions of pressure parts are particularly associated withsteam locomotive s. Locomotive boilers are of a construction with a very small hand-fed furnace, a boiler barrel containing boiling water under pressure, and tubes containing superheated gases from the fire (afire tube boiler ). In these, the latter type of explosion from the furnace side is practically unheard of.Locomotive boilers
These boilers are of a
smoke tube type withwood ,coal oroil used asfuel . The water feed is by means ofsteam -poweredinjector s orboiler feedwater pump s. For storage of fuel and water a separate tender is often provided, adding to the length of the locomotive. This tender usually has a sloping floor for easy flow of fuel toward the locomotive cab and firebox therein. There is asafety valve included on the steam side and also one or more gauges to warn of low water levels. Any failure of these would result in anexplosion of the pressure parts with consequent injury to operating personnel, apart from the damage to equipment. The consequences are more severe due to the restricted working space and constant movement of the locomotives.Safety valve s are provided to operate the pressure parts withinsafe limits. The water levelalarms are provided for corrective action by the locomotive drivers.teamboat boilers
The steamboat Sultana was destroyed in an explosion on
27 April ,1865 , resulting in the greatest maritime disaster inUnited States history. An estimated 1,700 passengers were killed when one of the ship's four boilers exploded and the "Sultana" sank not far fromMemphis, Tennessee . The boiler was thought to be the victim of bad construction. Sometimes known as 'the leaky woes'
Another US Civil War Steamboat explosion was the Steamer "Eclipse" on January 27, 1865, which was carring members of the 9th Indiana Artillery. One official Records report mentions the disaster reports 10 killed and 68 injured [http://cdl.library.cornell.edu/cgi-bin/moa/pageviewer?frames=1&coll=moa&view=50&root=%2Fmoa%2Fwaro%2Fwaro0103%2F&tif=00622.TIF&cite=http%3A%2F%2Fcdl.library.cornell.edu%2Fcgi-bin%2Fmoa%2Fmoa-cgi%3Fnotisid%3DANU4519-0103] ; a later report mentions that 27 were killed and 78 wounded [http://cdl.library.cornell.edu/cgi-bin/moa/pageviewer?frames=1&coll=moa&view=50&root=%2Fmoa%2Fwaro%2Fwaro0109%2F&tif=00722.TIF&cite=http%3A%2F%2Fcdl.library.cornell.edu%2Fcgi-bin%2Fmoa%2Fmoa-cgi%3Fnotisid%3DANU4519-0109] . Fox's Regimental Losses reports 29 killed. See [http://www.civilwarhome.com/chapt12.htm] ; the 9th Indiana's Artillery History is [http://www.civilwararchive.com/Unreghst/uninarty.htm#9th] .Use of boilers
In the very early days,
locomotives used reciprocatingsteam engine s to move the wheels. High-pressure boilers became widespread after the pioneering work ofRichard Trevithick in his attempts to improve the efficiency of the steam engine invented byJames Watt . Trevithick developed one of the first locomotives "Pen-y-darren " in the early 1800s, and was later followed byGeorge Stephenson . Standing steam engines used to power machinery were essential during theindustrial revolution , and there were many boiler explosions from a variety of causes. One of the first investigators of the problem wasWilliam Fairbairn , who helped establish the first insurance company dealing wth the losses such explosions could cause. He also established experimentally that thehoop stress in a cylindrical pressure vessel like a boiler was twice thelongitudinal stress . Such investigations helped him and others explain the importance ofstress concentration s in weakening boilers. The use of steam engines and boilers has been almost eliminated in present day locomotives worldwide. However, references are made here to the experiences of early boilers.Modern boilers
The following information is given for comparison only. These are mainly land based
industries for drivingsteam turbines working as prime movers.Modern boilers are more sophisticated and larger, constructed for stationary use. These boilers are both water tube and high-pressure types. These types are more sophisticated with all necessary
protection s, primarily used in land basedindustries andthermal power station s, particularly of power-generating utilities. The installation in these provides sufficient space for operator movement for them to be in asafe place in case of emergency, such as boiler orfurnace explosions , as compared to early locomotive boilers.Explosions
In
steam locomotive boilers, as knowledge was gained by trial and error in early days, the explosive situations and consequent damage due to explosions were inevitable. However, improved design and maintenance markedly reduced the number of boiler explosions by the end of the 19th century. Further improvements continued in the 20th century, but other methods of prime movers for locomotives had come into practice, such asdiesel engine s, which proved to be much safer, convenient, and economical.On land-based boilers, explosions of the pressure systems happened regularly in stationary steam boilers in the Victorian era, but are now very rare because of the various
protection s provided, and also because of regular inspections compelled bygovernmental and industry requirements. Furnace side explosions do happen occasionally, in spite of provisions requiring furnace side explosion doors, wrecking the whole boiler mostly due to operators bypassing the operating instructions.Locomotive boiler explosions in the UK
Hewison (1983) gives a comprehensive account of British boiler explosions, listing no less than 137 between 1815 and 1962. It is noteworthy that 122 of these were in the 19th century and only 15 in the 20th century.
Boiler explosions generally fall into two categories. The first is the breakage of the boiler barrel itself, through weakness/damage or excessive internal pressure, resulting in sudden discharge of steam over a wide area. Boiler plates have been thrown up to a quarter of a mile (Hewison, Rolt). The second type is the collapse of the firebox under steam pressure from the adjoining boiler, releasing flames and hot gases into the cab. Improved design and maintenance almost totally eliminated the first type, but the second type is always possible if the traincrew do not maintain the water level in the boiler.
Boiler barrels could explode if the internal pressure became too high. To prevent this, safety valves were installed to release the pressure at a set level. Early examples were spring-loaded, but Ramsbottom invented a tamper-proof valve which was universally adopted. The other common cause of explosions was internal
corrosion which weakened the boiler barrel so that it could not withstand normal operating pressure. In particular, grooves could occur along horizontal seams (lap joints) below water level. Dozens of explosions resulted, but were eliminated by 1900 by the adoption of butt joints, plus improved maintenance schedules and regular hydraulic testing.Fireboxes were generally made of copper, though later locomotives had steel fireboxes. They were held to the outer part of the boiler by stays (numerous small supports). Parts of the firebox in contact with full steam pressure have to be kept covered with water, to stop them overheating and weakening. The usual cause of firebox collapses is that the boiler water level falls too low and the top of the firebox (crown sheet) becomes uncovered and overheats. This occurs if the fireman has failed to maintain water level or the level indicator (gauge glass) is faulty. A less common reason is breakage of large numbers of stays, due to corrosion or unsuitable material.
Of the 20th century accidents, just 2 were boiler barrel failures (at Cardiff 1909 and Buxton 1921), and both were caused by misassembly of the
safety valve s so that the boiler reached a pressure far higher than designed. Of the 13 firebox collapses, 4 were due to broken stays, 1 to scale buildup on the firebox and the remaining 8 were low water level.List of locomotive boiler explosions
(in chronological order)
* In 1815, an early experimental locomotive, "Brunton's Mechanical Traveller", on four wheels but pushed by mechanical feet, blew up at Philadelphia, Co Durham, UK and killed 16 people, mainly sightseers. This was the earliest recorded explosion.
* In 1828, the boiler ofLocomotion No. 1 exploded, killing the driver.
*June 17 ,1831 – Charleston, South Carolina: After the pressure safety valve was tied down by one of the train's crew, theBest Friend of Charleston locomotive exploded.
* 1865 - ten explosions in a single year in the UK, 9 of these being burst boiler barrels due to corrosion.
*December 21 ,1881 - E17 class locomotive exploded inNew South Wales .
*18 June ,1892 -0-4-2 locomotive exploded onNorth East Dundas Tramway ,Tasmania [Light Railways - Feb 2007. ]
*21 April 1910 - three people killed when locomotive boiler barrel exploded at Rumney shed inCardiff ,Wales . The safety valves had been assembled with some components the wrong way round, preventing them working.
* On March 18, 1912 a boiler failed on a Southern Pacific locomotive at the SP Roundhouse in San Antonio, Texas. This disaster took no fewer than 26 lives. One of the killed was in her home SEVEN blocks away when a part of the boiler came crashing back to Earth.
*11 November 1921 - last boiler barrel explosion in UK, at Buxton, due tosafety valve s being too tight; boiler estimated to have reached 600 psi before exploding, design pressure 200 psi.
* 1943/1944 - three American-built locomotives exploded in service in theUnited Kingdom due to operator unfamiliarity with thewater gauge .
*20 October ,1948 - The boiler explodes on a Union Pacific 9000 class4-12-2 , killing three crew members. This was the last boiler explosion on the Union Pacific.
*24 January ,1962 - last boiler explosion on British Railways, at Bletchley; firebox collapse due to water shortage, driver and fireman scalded but survived.
*November 27 ,1977 –Bitterfeld ,East Germany : The boiler of a Class 01 steam engine exploded due to lack of water, killing 9 and injuring 45.See also
* Boiler safety
*Fusible plug
*Grover Shoe Factory disaster
*List of rail accidents Bibliography
*
*References
External links
*http://www.steamlocomotive.com/
Wikimedia Foundation. 2010.