Tait conjectures

Tait conjectures

The Tait conjectures are conjectures made by Peter Guthrie Tait in his study of knots. The Tait conjectures involve concepts in knot theory such as alternating knots, chirality, and writhe. All of the Tait conjectures have been solved, the most recent being the Tait flyping conjecture proven in 1991 by Morwen Thistlethwaite and William Menasco.

Background

Tait came up with his conjectures after his attempt to tabulate all knots in the late 19th century. As a founder of the field of knot theory, his work lacks a mathematically rigorous framework, and it is unclear whether the conjectures apply to all knots, or just to alternating knots. Most of them are only true for alternating knots. In the Tait conjectures, a knot diagram is reduced if all the isthmus have been removed.

The Tait conjectures

Tait conjectured that in certain circumstances, crossing number was a knot invariant, specifically:

Any reduced diagram of an alternating link has the fewest possible crossings.
In other words, the crossing number of an reduced, alternating link is an invariant of the knot. This conjecture was proven by Morwen Thistlethwaite, Louis Kauffman and K. Murasugi in 1987, using the Jones polynomial. Another one of his conjectures:
A reduced alternating link with zero writhe implies that the link is chiral.Louis Kauffman, "Formal knot theory", 2006, ISBN 0-486-45052-X 221-227]
This conjecture was also proven by Morwen Thistlethwaite.

The Tait flyping conjecture

The Tait flyping conjecture can be stated:

Given any two reduced alternating diagrams D1 and D2 of an oriented, prime alternating link: D1 may be transformed to D2 by means of a sequence of certain simple moves called "flypes". Also known as the Tait flyping conjecture.Weisstein, Eric W. "Tait's Knot Conjectures." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TaitsKnotConjectures.html]
The Tait flyping conjecture was proven by Morwen Thistlethwaite and William Menasco in 1991. The Tait flyping conjecture implies some more of Tait's conjectures:
Any two reduced diagrams of the same alternating knot have the same writhe.
This follows because flyping preserves writhe. This was proven earlier by Morwen Thistlethwaite, Louis Kauffman and K. Murasugi in 1987. For non-alternating knots this conjecture is not true, assuming so lead to the duplication of the Perko pair, because it has two reduced projections with different writhe. The flyping conjecture also implies this conjecture:
Alternating Amphichiral knots have even crossing number. A. Stoimenow, "Tait's conjectures and odd amphicheiral knots", 2007, [http://arxiv.org/abs/0704.1941 arXiv: 0704.1941v1] ]
This follows because a knot's mirror image has opposite writhe. This one is also only true for alternating knots, a non-alternating amphichiral knot with crossing number 15 was found, by Morwen Thistlethwaite. [Weisstein, Eric W. "Amphichiral Knot." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/AmphichiralKnot.html]

References

ee also

*Knot theory
*Tangle (knot theory)
*Knot (mathematics)
*Prime knot


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • Liste Des Conjectures Mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • Liste des conjectures — mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les… …   Wikipédia en Français

  • Liste des conjectures mathematiques — Liste des conjectures mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős,… …   Wikipédia en Français

  • Liste des conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Alternating knot — In knot theory, a link diagram is alternating if the crossings alternate under, over, under, over, as you travel along each component of the link. A link is alternating if it has an alternating diagram.Many of the knots with crossing number less… …   Wikipedia

  • Morwen Thistlethwaite — Nationality  British Fields …   Wikipedia

  • History of knot theory — For thousands of years, knots have been used for basic purposes such as recording information, fastening and tying objects together. Over time people realized that different knots were better at different tasks, such as climbing or sailing. Knots …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”