Heron's formula

Heron's formula

In geometry, Heron's (or Hero's) formula states that the area "(A)" of a triangle whose sides have lengths "a", "b", and "c" is :A = sqrt{sleft(s-a ight)left(s-b ight)left(s-c ight)}

where "s" is the semiperimeter of the triangle:

:s=frac{a+b+c}{2}.

Heron's formula can also be written as:

:A={ sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b),} over 4}

:A={ sqrt{2(a^2 b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4),} over 4}

:A={ sqrt{(a^2 + b^2 + c^2)^2 - 2(a^4 + b^4 + c^4),} over 4}.

History

The formula is credited to Heron of Alexandria, and a proof can be found in his book, "Metrica", written "c." A.D. 60. It has been suggested that Archimedes knew the formula, and since "Metrica" is a collection of the mathematical knowledge available in the ancient world, it is possible that it predates the reference given in the work. [ [http://mathworld.wolfram.com/HeronsFormula.html Heron's Formula - from Wolfram MathWorld ] ]

A formula equivalent to Heron's namely:

:A=frac1{2}sqrt{a^2 c^2 - left( frac{a^2+c^2-b^2}{2} ight)^2}

was discovered by the Chinese independently of the Greeks. It was published in "Shushu Jiuzhang" (“Mathematical Treatise in Nine Sections”), written by Qin Jiushao and published in A.D. 1247.

Proof

A modern proof, which uses algebra and trigonometry and is quite unlike the one provided by Heron, follows. Let "a", "b", "c" be the sides of the triangle and "A", "B", "C" the angles opposite those sides. We have:cos(C) = frac{a^2+b^2-c^2}{2ab}by the law of cosines. From this we get the algebraic statement::sin(C) = sqrt{1-cos^2(C)} = frac{sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2 {2ab}.The altitude of the triangle on base "a" has length "b"sin(C), and it follows

:

The difference of two squares factorization was used in two different steps.

Proof using the Pythagorean theorem

using only elementary means.

In the form 4A^2= 4s(s-a)(s-b)(s-c), Heron's formula reduces on the left to (ch)^2, or:(cb)^2-(cd)^2using b^2-d^2=h^2 by the Pythagorean theorem, and on the right to:(s(s-a)+(s-b)(s-c))^2((s(s-a)-(s-b)(s-c))^2via the principle (p+q)^2-(p-q)^2=4pq. It therefore suffices to show: cb=s(s-a)+(s-b)(s-c), and: cd = s(s-a)-(s-b)(s-c).The former follows immediately by substituting (a+b+c)/2 for s and simplifying. Doing this for the latter reduces s(s-a)-(s-b)(s-c) only as far as (b^2+c^2-a^2)/2. But if we replace b^2 by d^2+h^2 and a^2 by (c-d)^2+h^2, both by Pythagoras, simplification then produces cd as required.

Numerical stability

Heron's formula as given above is numerically unstable for triangles with a very small angle.A stable alternative [http://http.cs.berkeley.edu/~wkahan/Triangle.pdf] involves arranging the lengths of the sides so that:"a" ≥ "b" ≥ "c"and computing: A = frac{1}{4}sqrt{(a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c))}.

The parentheses in the above formula are required in order to prevent numerical instability in the evaluation.

Generalizations

Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral; both of which are special cases of Bretschneider's formula for the area of a quadrilateral. In both cases Heron's formula is obtained by setting one of the sides of the quadrilateral to zero.

Heron's formula is also a special case of the formula of the area of the trapezoid based only on its sides. Heron's formula is obtained by setting the smaller parallel side to zero.

Expressing Heron's formula with a determinant in terms of the squares of the distances between the three given vertices,: A = frac{1}{4} sqrt{ egin{vmatrix} 0 & a^2 & b^2 & 1 \a^2 & 0 & c^2 & 1 \b^2 & c^2 & 0 & 1 \ 1 & 1 & 1 & 0end{vmatrix} } illustrates its similarity to Tartaglia's formula for the volume of a three-simplex.

Another generalization of Heron's formula to polygons inscribed in a circle was discovered by David P. Robbins.fact|date=November 2007

Heron-looking formula for tetrahedrons

If U,, V,, W,, u,, v,, w are lengths of edges of the tetrahedron (first 3 form a triangle; u, opposite to U, and so on), then

:Volume = frac{sqrt {,( - a + b + c + d),(a - b + c + d),(a + b - c + d),(a + b + c - d){192,u,v,w}

where:a = sqrt {xYZ}:b = sqrt {yZX}:c = sqrt {zXY}:d = sqrt {xyz}:X = (w - U + v),(U + v + w):x = (U - v + w),(v - w + U):Y = (u - V + w),(V + w + u):y = (V - w + u),(w - u + V):Z = (v - W + u),(W + u + v):z = (W - u + v),(u - v + W)

ee also

* Synthetic geometry
* Heronian triangle

Notes

References

* cite book
author=Heath, Thomas L.
title=A History of Greek Mathematics (Vol II)
publisher=Oxford University Press
year=1921
pages=321-323

External links

* [http://mathworld.wolfram.com/HeronsFormula.html MathWorld entry on Heron's Formula]
* [http://www.cut-the-knot.org/pythagoras/herons.shtml A Proof of the Pythagorean Theorem From Heron's Formula] at cut-the-knot
* [http://www.mathopenref.com/heronsformula.html Interactive applet and area calculator using Heron's Formula]
* [http://www.scriptspedia.org/Heron%27s_Formula Implementations of Heron's formula in various programming languages]
* [http://www.math.dartmouth.edu/~doyle/docs/heron/heron.txt J.H. Conway discussion on Heron's Formula]
* [http://www.mathpages.com/home/kmath196.htm Kevin Brown's simplification of Heron's Pythagorean argument]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Heron's formula — Formula for finding the area of a triangle in terms of the lengths of its sides. In symbols, if a, b, and c are the lengths of the sides: Area = s(s a)(s b)(s c)where s is half the perimeter, or (a + b + c)/2. * * * …   Universalium

  • Heron's formula — noun The formula , where a, b, and c are the sidelengths of a triangle, s is its semiperimeter, and A is its area …   Wiktionary

  • Heron of Alexandria — or Hero of Alexandria flourished с. AD 62, Alexandria, Egypt Greek mathematician and inventor. He is remembered for his formula for the area of a triangle and for inventing the aeolipile, the first steam engine, which, in his design, was a… …   Universalium

  • Heron (disambiguation) — The word heron may refer to: *Heron, the wading birds *Heron, a dinghy *De Havilland Heron, a four engine aircraft. *Heron, a folk rock band, recording on the Dawn Records label in the early 1970s *Heron Plastics, a kit car manufacturer in the… …   Wikipedia

  • formula — /fawr myeuh leuh/, n., pl. formulas, formulae / lee /. 1. a set form of words, as for stating or declaring something definitely or authoritatively, for indicating procedure to be followed, or for prescribed use on some ceremonial occasion. 2. any …   Universalium

  • Herón de Alejandría — Herón de Alejandría. Nacimiento ca. 10 d. C. Alejandría, Egipto helenístico Fallecimiento …   Wikipedia Español

  • Herón de Alejandría — Herón (o Hero) de Alejandría (aproximadamente año 10 dC. alrededor de los años 70) fue un ingeniero griego, floreció en Alejandría, posiblemente en el siglo primero. Después de la decadencia del Imperio Alejandrino y con él la ciencia griega,… …   Enciclopedia Universal

  • Herón, fórmula de — Fórmula para obtener el área de un triángulo en función de las longitudes de sus lados. En símbolos, si a, b, y c son las longitudes de los lados: área = s(s a)(s b)(s c) en donde s es la mitad del perímetro, es decir, (a + b + c)/2 …   Enciclopedia Universal

  • Fórmula de Herón — Triángulo de lados a, b, c. En geometría, la fórmula de Herón, descubierta por Herón de Alejandría, relaciona el área de un triángulo en términos de las longitudes de sus lados a, b y c …   Wikipedia Español

  • Fórmula de Brahmagupta — En geometría , la fórmula Brahmagupta encuentra el área de cualquier cuadrilátero dadas las longitudes de los lados y algunos de los ángulos. En su forma más común, se obtiene el área de los cuadriláteros que se pueda inscribir en un círculo .… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”