Sine and cosine transforms

Sine and cosine transforms

In mathematics, the Fourier sine and cosine transforms are special cases of the continuous Fourier transform, arising naturally when attempting to transform odd and even functions, respectively.

The general Fourier transform is defined as:


F(\omega) = \mathcal{F}(f)(\omega)
 = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(t) e^{-i\omega t}\,dt.

Expanding the integrand by means of Euler's formula results in:

F(\omega)=\frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(t)(\cos\,{\omega t} - i\,\sin{ \,\omega t})\,dt,

which may be written as the sum of two integrals:

F(\omega)=\frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(t)\cos\,{\omega t} \,dt - \frac{i}{\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(t)\sin\,{\omega t}\,dt.

The Fourier sine transform and Fourier cosine transform are derived from this.

Contents

Fourier sine transform

The Fourier sine transform is a special case of the continuous Fourier transform, arising naturally when attempting to transform an odd function. From the general Fourier transform noted above, if f(t) is assumed to be an odd function, the product f(t)cosωt is also odd whilst the product f(t)sinωt is an even function. Since the integral is being computed over an interval symmetric about the origin (i.e. -∞ to +∞), the first integral must vanish to zero, and the second may be simplified to give:

F(\omega)= -i\,\sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty f(t)\sin\,{\omega t} \,dt,

which is the Fourier sine transform for odd f(t). It is clear that the transformed function F(ω) is also an odd function, and a similar analysis of the general Inverse Fourier transform yields a second sine transform, namely:

f(t)= i\,\sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty F(\omega)\sin\,{\omega t} \,d\omega.

The numerical factors in the transforms are defined uniquely only by their product, as discussed for general continuous Fourier transforms. For this reason the imaginary units i and -i can be omitted, with the more commonly seen forms of the Fourier sine transforms being:

F(\omega)= \sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty f(t)\sin\,{\omega t} \,dt,

and

f(t)= \sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty F(\omega)\sin\,{\omega t} \,d\omega.

Fourier cosine transform

The Fourier cosine transform is a special case of the continuous Fourier transform, arising naturally when attempting to transform an even function. From the general Fourier transform noted above, if f(t) is assumed to be an even function, the product f(t)cosωt is also even whilst the product f(t)sinωt is an odd function. Since the integral is being computed over an interval symmetric about the origin (i.e. -∞ to +∞), the second integral must vanish to zero, and the first may be simplified to give:

F(\omega)= \sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty f(t)\cos\,{\omega t} \,dt,

which is the Fourier cosine transform for even f(t). It is clear that the transformed function F(ω) is also an even function, and a similar analysis of the general inverse Fourier transform yields a second cosine transform, namely:

f(t)= \sqrt{\frac{2}{\pi}} \int\limits_{0}^\infty F(\omega)\cos\,{\omega t} \,d\omega.

The numerical factors in the transforms are defined uniquely only by their product, as discussed for general continuous Fourier transforms.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Sine — For other uses, see Sine (disambiguation). Sine Basic features Parity odd Domain ( ∞,∞) Codomain [ 1,1] P …   Wikipedia

  • Discrete cosine transform — A discrete cosine transform (DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions oscillating at different frequencies. DCTs are important to numerous applications in science and engineering, from lossy… …   Wikipedia

  • Discrete sine transform — In mathematics, the discrete sine transform (DST) is a Fourier related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the length,… …   Wikipedia

  • List of Fourier-related transforms — This is a list of linear transformations of functions related to Fourier analysis. Such transformations map a function to a set of coefficients of basis functions, where the basis functions are sinusoidal and are therefore strongly localized in… …   Wikipedia

  • Discret cosine transform — Transformée en cosinus discrète La transformée en cosinus discrète ou TCD (de l anglais : DCT ou Discrete Cosine Transform) est une transformation proche de la transformée de Fourier discrète (DFT). Le noyau de projection est un cosinus et… …   Wikipédia en Français

  • Discrete cosine transform — Transformée en cosinus discrète La transformée en cosinus discrète ou TCD (de l anglais : DCT ou Discrete Cosine Transform) est une transformation proche de la transformée de Fourier discrète (DFT). Le noyau de projection est un cosinus et… …   Wikipédia en Français

  • Modified discrete cosine transform — The modified discrete cosine transform (MDCT) is a Fourier related transform based on the type IV discrete cosine transform (DCT IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger… …   Wikipedia

  • Symmetric convolution — In mathematics, symmetric convolution is a special subset of convolution operations in which the convolution kernel is symmetric across its zero point. Many common convolution based processes such as Gaussian blur and taking the derivative of a… …   Wikipedia

  • DCT — Transformée en cosinus discrète La transformée en cosinus discrète ou TCD (de l anglais : DCT ou Discrete Cosine Transform) est une transformation proche de la transformée de Fourier discrète (DFT). Le noyau de projection est un cosinus et… …   Wikipédia en Français

  • Transformee en cosinus discrete — Transformée en cosinus discrète La transformée en cosinus discrète ou TCD (de l anglais : DCT ou Discrete Cosine Transform) est une transformation proche de la transformée de Fourier discrète (DFT). Le noyau de projection est un cosinus et… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”