Wave Dragon

Wave Dragon

Wave Dragon is a floating slack-moored energy converter of the overtopping type, located in the northern Denmark. It was the world's first offshore wave energy converter. Wave Dragon is a joint EU research project, including partners from Austria, Denmark, Germany, Ireland, Portugal, Sweden, and the UK.cite news
publisher=Euroepan Commission
url=http://europa.eu/rapid/pressReleasesAction.do?reference=IP/04/350&format=HTML&aged=0&language=EN&guiLanguage=en
title= Europe at the forefront in research on solar, wave and geothermal energies. Press release IP/04/350
date=2004-03-16
accessdate=2008-05-31
]

History

The 237 tonnes prototype Wave Dragon was March 2003 towed to the first test site at the Danish Wave Energy Test Center in Nissum Bredning fjord. It was tested until January 2005. In 2006 a modified prototype was deployed to another test site with more energetic wave climate. In May 2008, the maintenance and repair works started after which the prototype will be re-deployed at the original test site for final testings.

Technology

Wave Dragon is a floating, slack-moored energy converter of the 'overtopping' type which can be deployed as a single unit, or in arrays of up to 200 units; the output of such an array would have a capacity comparable to traditional fossil-fuel power plants.

The first prototype was connected to the power grid in 2003 and is currently deployed in Nissum Bredning, Denmark. Long term testing is under way to determine system performance; i.e. availability and power production under different weather and tide conditions. A multi-MW deployment is expected in 2009.

The Wave Dragon concept combines existing, mature offshore and hydro turbine technology. In the Wave Dragon, the Kaplan turbine is being tested at the Technical University of Munich. This turbine uses a siphon inlet whereas the next 6 turbines to be installed will be equipped with a cylinder gate to start and stop water inlet to the turbine. [Keulenaer, H. [http://www.leonardo-energy.org/drupal/wave-dragon “Wave Dragon”] , "Leonardo Energy", 2007-04-13. Retrieved on 2008-04-10:"]

Principles

Construction

Wave Dragon uses principles from traditional hydropower plants in an offshore floating platform to use wave energy.

The Wave Dragon consists of two wave reflectors that direct the waves towards a ramp. Behind the ramp, a large reservoir collects the directed water, and temporarily stores the water. The reservoir is held above sea level. The water leaves the reservoir through hydro turbines.Wave Dragon [http://www.wavedragon.net/index.php?option=com_frontpage&Itemid=1 "Wave Dragon Homepage"] , Retrieved on 2008-04-10:"]

Three-step energy conversion:

Overtopping (absorption) -> Storage (reservoir) -> Power-take-off (low-head turbines)

Main components of a Wave Dragon:
*Main body with a double curved ramp (reinforced concrete and/or steel construction)
*Two wave reflectors in reinforced concrete and/or steel
*Mooring system
*Propeller turbines
*Permanent Magnet Generators

Design

Wave energy converters make use of the mechanical motion or fluid pressure. Wave Dragon does not have any conversion, e.g. oscillating water/air columns, hinged rafts, and gyroscopic/hydraulic devices. The Wave Dragon directly utilises the energy of the water's motion.

The Wave Dragon is of heavy, durable construction and has only one kind of moving parts: the turbines. This is essential for any device bound for operations offshore, where extreme conditions and fouling, etc., seriously affect any moving parts.

Wave Dragon model testing has been used in order to:
*Optimize 'overtopping'
*Refine hydraulic response: anti-pitching and anti-rolling.
*Reduce stress on wave reflectors and the mooring system, etc.
* Reduce construction costs, maintenance and running costs.

Main Body

The main body or platform consists of one large floating reservoir. To reduce rolling and keep the platform stable, the Wave Dragon must be large and heavy. The prototype used in Nissum is of a traditional (ship-like) plate construction of plates of 8 mm steel. The total steel weight of the main body plus the ramp is 150 tons, so that 87 tons of water must be added to achieve the 237 tons total weight needed for stable continuous operation.

ee also

*Wave power

References

External links

* [http://www.wavedragon.net Wave Dragon] - official website
*http://www.guardian.co.uk/science/2004/mar/21/energy.renewableenergy


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Wave Dragon — ( Dragón de las olas en inglés) es un sistema de conversión de energía undimotriz, el primero que funciona en alta mar. Tecnología Es un conversor energético flotante, que funciona anclado al fondo del mar convirtiendo la energía potencial del… …   Wikipedia Español

  • Wave dragon — Wellenkraftwerke sind eine Form der Wasserkraftwerke. Sie nutzen die Energie der Meereswellen zur Gewinnung elektrischen Stromes. Wellenkraft zählt zu den erneuerbaren Energien. Im Unterschied zum Gezeitenkraftwerk wird nicht der Tidenhub… …   Deutsch Wikipedia

  • Dragon Ball Z: Broly — s Second Coming Japanese box art Starring See Cast Music by …   Wikipedia

  • Dragon Drive — ドラゴンドライブ (Doragon Doraibu) Genre Adventure, Comedy, Science fiction Manga Written by Kenichi Sakura …   Wikipedia

  • Dragon (band) — Dragon Dragon at ARIA Hall of Fame Melbourne Town Hall, 1 July 2008 L–R: Kerry Jacobson, Rob Taylor, Todd Hunter, Alan Mansfield Background information A …   Wikipedia

  • Dragon Ball GT: Transformation — Developer(s) Webfoot Technologies Publisher(s) Atari …   Wikipedia

  • Dragon Ball Z: The World's Strongest — Dragon Ball Z: The World s weakest clowns in the world besides krillen Geneon DVD cover Directed by Daisuke Nishio …   Wikipedia

  • Dragon dance — Traditional Chinese 舞龍 …   Wikipedia

  • Dragon Ball Z: Burst Limit — Developer(s) Dimps Publisher(s) JP / …   Wikipedia

  • Dragon Quest: Dai no Daibōken — Dragon Warrior: Dai s Great Adventure ドラゴンクエスト ダイの大冒険 (Dragon Quest Dai no Daibōken) Manga …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”