Complex wavelet transform

Complex wavelet transform

The complex wavelet transform (CWT) is a complex-valued extension to the standard discrete wavelet transform (DWT). It is a two-dimensional wavelet transform which provides multiresolution, sparse representation, and useful characterization of the structure of an image. Further, it purveys a high degree of shift-invariance in its magnitude. However, a drawback to this transform is that it is exhibits 2d (where d is the dimension of the signal being transformed) redundancy compared to a separable (DWT).

The use of complex wavelets in image processing was originally set up in 1995 by J.M. Lina and L. Gagnon [1] in the framework of the Daubechies orthogonal filters banks[2]. It was then generalized in 1997 by Prof. Nick Kingsbury [1][2][3] of Cambridge University.

In the area of computer vision, by exploiting the concept of visual contexts, one can quickly focus on candidate regions, where objects of interest may be found, and then compute additional features through the CWT for those regions only. These additional features, while not necessary for global regions, are useful in accurate detection and recognition of smaller objects. Similarly, the CWT may be applied to detect the activated voxels of cortex and additionally the temporal independent component analysis (tICA) may be utilized to extract the underlying independent sources whose number is determined by Bayesian information criterion [3].

Contents

Dual-tree complex wavelet transform

The Dual-tree complex wavelet transform (DTCWT) calculates the complex transform of a signal using two separate DWT decompositions (tree a and tree b). If the filters used in one are specifically designed different from those in the other it is possible for one DWT to produce the real coefficients and the other the imaginary.

Block diagram for a 3-level DTCWT

This redundancy of two provides extra information for analysis but at the expense of extra computational power. It also provides approximate shift-invariance (unlike the DWT) yet still allows perfect reconstruction of the signal.

The design of the filters is particularly important for the transform to occur correctly and the necessary characteristics are:

  • The low-pass filters in the two trees must differ by half a sample period
  • Reconstruction filters are the reverse of analysis
  • All filters from the same orthonormal set
  • Tree a filters are the reverse of tree b filters
  • Both trees have the same frequency response

See also

References

  1. ^ N. G. Kingsbury (September 1999). "Image processing with complex wavelets". Phil. Trans. Royal Society London. London. http://citeseer.ist.psu.edu/kingsbury97image.html. 
  2. ^ Kingsbury, N G (May 2001). "Complex wavelets for shift invariant analysis and filtering of signals" (PDF). Journal of Applied and Computational Harmonic Analysis 10 (3): 234–253. doi:10.1006/acha.2000.0343. http://www-sigproc.eng.cam.ac.uk/%7Engk/publications/ngk_ACHApap.pdf. 
  3. ^ Selesnick, Ivan W.; Baraniuk, Richard G. and Kingsbury, Nick G. (November 2005). "The Dual-Tree Complex Wavelet Transform" (PDF). IEEE Signal Processing Magazine 22 (6): 123–151. doi:10.1109/MSP.2005.1550194. http://www-sigproc.eng.cam.ac.uk/%7Engk/publications/ngk_SPmag_nov05.pdf. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Wavelet transform — An example of the 2D discrete wavelet transform that is used in JPEG2000. In mathematics, a wavelet series is a representation of a square integrable (real or complex valued) function by a certain orthonormal series generated by a wavelet …   Wikipedia

  • Discrete wavelet transform — An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low pass… …   Wikipedia

  • Continuous wavelet transform — of frequency breakdown signal. Used symlet with 5 vanishing moments. A continuous wavelet transform (CWT) is used to divide a continuous time function into wavelets. Unlike Fourier transform, the continuous wavelet transform possesses the ability …   Wikipedia

  • Harmonic wavelet transform — In the mathematics of signal processing, the harmonic wavelet transform, introduced by David Edward Newland in 1993, is a wavelet based linear transformation of a given function into a time frequency representation. It combines advantages of the… …   Wikipedia

  • Fast wavelet transform — The Fast Wavelet Transform is a mathematical algorithm designed to turn a waveform or signal in the time domain into a sequence of coefficients based on an orthogonal basis of small finite waves, or wavelets. The transform can be easily extended… …   Wikipedia

  • Wavelet series — In mathematics, a wavelet series is a representation of a square integrable (real or complex valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal… …   Wikipedia

  • Wavelet — A wavelet is a mathematical function used to divide a given function or continuous time signal into different frequency components and study each component with a resolution that matches its scale. A wavelet transform is the representation of a… …   Wikipedia

  • Complex mexican hat wavelet — The complex Mexican hat wavelet is a low oscillation, complex valued, wavelet for the continuous wavelet transform. This wavelet is formulated in terms of its Fourier transform as the Hilbert analytic function of the conventional Mexican hat… …   Wikipedia

  • List of wavelet-related transforms — A list of wavelet related transforms:* Continuous wavelet transform (CWT) * Multiresolution analysis (MRA) * Discrete wavelet transform (DWT) * Fast wavelet transform (FWT) * Complex wavelet transform * Non or undecimated wavelet transform, the… …   Wikipedia

  • Complex number — A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the square root of –1. A complex… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”