Optical contact bonding

Optical contact bonding

Optical contact bonding is a glueless process whereby two closely conformal surfaces are joined together, being held purely by intermolecular forces.

Contents

History

Isaac Newton has been credited with the first description of conformal interaction observed through the interference phenomenon known as Newton's rings, though it was S. D. Poisson in 1823 who first described the optical characteristics of two identical surfaces in contact. It was not until the 19th century that objects were made of such precision that the binding phenomenon was observed. The clinging together was described as "wringing together", or as "ansprengen" in German. By 1900 optical contact bonding was being employed in the construction of optical prisms, and the following century saw further research into the phenomenon at the same time that ideas of inter-atom interactions were first being studied.[1]

Explanation

Intermolecular forces such as Van der Waals forces, hydrogen bonds, and dipole-dipole interactions are typically not sufficiently strong to hold two apparently conformal rigid bodies together, since the forces drop off rapidly with distance,[2] and the actual area in contact between the two bodies is small due to surface roughness and minor imperfections.

However, if the bodies are conformal to an accuracy of better than 10 angstroms (1 nanometer), then a sufficient surface area is in close enough contact for the intermolecular interactions to have an observable real world physical manifestation—that is, the two objects stick together.[3] Such a condition requires a high degree of accuracy and surface smoothness, which is typically found in optical components, such as prisms.

Production of an optical contact bond

In addition to both surfaces' being practically conformal (in practice often completely flat), the surfaces must also be extremely clean and free from any small contamination that would prevent or weaken the bond—including grease films and specks of dust. For bonding to occur, the surfaces need only to be brought together; the intermolecular forces draw the bodies into the lowest energy conformation, and no pressure needs to be applied.

Advantages

Since the method requires no binder, balsam or glue, the physical properties of the bound object are the same as the objects joined. Typically, glues and binders are more heat sensitive or have undesirable properties compared to the actual bodies being joined. The use of optical contact bonding allows the production of a final product with properties as good as the bulk solid.[4]

Uses

Originally the process was confined to optical equipment such as prisms—the earliest examples being made around 1900. Later the scope of use was expanded to microelectronics and other miniaturised devices.[5]

See also

Cohesion (chemistry) and Adhesion

References

  1. ^ Wafer bonding. Marin Alexe, U. Gösele. Page 5 google books
  2. ^ More rapidly than 1/distance2
  3. ^ Design and fabrication of acousto-optic devices. Akis P. Goutzoulis, Dennis R. Pape, Sergeĭ Viktorovich Kulakov page 383 google books
  4. ^ Optical Contacting: Changing the Interface of Optics. Chris Myatt, Nick Traggis and Kathy Li Dessau. Precision Photonics Corporation precisionphotonics.com
  5. ^ Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook. Jan Haisma, and G. A. C. M. Spierings. Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands. via sciencedirect.com

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Optical flat — Optical flats in case. About 1 inch (2.5 cm) in diameter …   Wikipedia

  • Optical fiber composite overhead ground wire — (OPGW) is a type of cable that is used in the construction of electric power transmission and distribution lines. Such cable combines the functions of grounding and communications. An OPGW cable contains a tubular structure with one or more… …   Wikipedia

  • Optical media preservation — The preservation of optical media is essential because it is a resource in libraries, and stores audio, video, and computer data to be accessed by patrons. While optical discs are generally more reliable and durable than older media types,… …   Wikipedia

  • Contact mechanics — Continuum mechanics …   Wikipedia

  • Optical ground wire — An optical ground wire (also known as an OPGW or, in the IEEE standard, an optical fiber composite overhead ground wire) is a type of cable that is used in the construction of electric power transmission and distribution lines. Such cable… …   Wikipedia

  • chemical bonding — ▪ chemistry Introduction       any of the interactions that account for the association of atoms into molecules, ions, crystals, and other stable species that make up the familiar substances of the everyday world. When atoms approach one another …   Universalium

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • textile — /teks tuyl, til/, n. 1. any cloth or goods produced by weaving, knitting, or felting. 2. a material, as a fiber or yarn, used in or suitable for weaving: Glass can be used as a textile. adj. 3. woven or capable of being woven: textile fabrics. 4 …   Universalium

  • industrial glass — Introduction       solid material that is normally lustrous and transparent in appearance and that shows great durability under exposure to the natural elements. These three properties lustre, transparency, and durability make glass a favoured… …   Universalium

  • chemistry — /kem euh stree/, n., pl. chemistries. 1. the science that deals with the composition and properties of substances and various elementary forms of matter. Cf. element (def. 2). 2. chemical properties, reactions, phenomena, etc.: the chemistry of… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”