Noncommutative ring

Noncommutative ring

In mathematics, more specifically modern algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, if R is a noncommutative ring, there exists a and b in R with a·bb·a, and conversely.

Noncommutative rings are ubiquitous in mathematics, and occur in numerous sciences. For instance, matrix multiplication is never commutative, except in trivial cases, despite the fact that matrices arise naturally as rings of linear transformations of some vector space over a field. Furthermore, mathematical physics and more generally linear algebra exploit the concept of a matrix often. Noncommutative rings also arise naturally in the representation theory of groups. Algebras, and more specifically group algebras, occur also in noncommutative ring theory.

The study of noncommutative rings is a major area of modern algebra. Influential work by Richard Brauer, Nathan Jacobson, I. N. Herstein and P. M. Cohn and other mathematicians, has led to much of modern day ring theory. Basic but influential concepts in the field include the Jacobson radical, the Jacobson density theorem, the Artin–Wedderburn theorems and the Brauer group.

Discussion

Often noncommutative rings possess interesting invariants that commutative rings do not. As an example, there exist rings which contain non-trivial proper left or right ideals, but are still simple; that is contain no non-trivial proper (two-sided) ideals.

The theory of vector spaces is one illustration of a special case of an object studied in noncommutative ring theory. In linear algebra, the "scalars of a vector space" are required to lie in a field, that is, a commutative division ring. The concept of a module, however, requires only that the scalars lie in an abstract ring. Neither commutativity nor the division ring assumption is required on the scalars in this case. Module theory has various applications in noncommutative ring theory, as one can often obtain information about the structure of a ring by making use of its modules. The concept of the Jacobson radical of a ring; that is, the intersection of all right/left annihilators of simple right/left modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right/left ideals in the ring, shows how the internal structure of the ring is reflected by its modules. It is also remarkable that the intersection of all maximal right ideals in a ring is the same as the intersection of all maximal left ideals in the ring, in the context of all rings; whether commutative or noncommutative. Therefore, the Jacobson radical also captures a concept which may seem to be not well-defined for noncommutative rings.

Noncommutative rings serve as an active area of research due to their ubiquity in mathematics. For instance, the ring of n by n matrices over a field is noncommutative despite its natural occurrence in physics. More generally, endomorphism rings of abelian groups are rarely commutative.

Noncommutative rings, like noncommutative groups, are not very well understood. For instance, although every finite abelian group is the direct sum of (finite) cyclic groups of prime-power order, non-abelian groups do not possess such a simple structure. Likewise, various invariants exist for commutative rings, whereas invariants of noncommutative rings are difficult to find. As an example, the nilradical, although "innocent" in nature, need not be an ideal unless the ring is assumed to be commutative. Specifically, the set of all nilpotent elements in the ring of all n x n matrices over a division ring never forms an ideal, irrespective of the division ring chosen. Therefore, the notion of the nilradical, as it stands, cannot be studied in noncommutative ring theory. Note however that there are analogues of the nilradical defined for noncommutative rings, that coincide with the notion of the nilradical when commutativity is assumed.

References

  • I. Martin Isaacs (1993). Algebra, a graduate course (1st edition ed.). Brooks/Cole Publishing Company. ISBN 0-534-19002-2. 
  • I.N. Herstein (1968). Noncommutative rings (1st edition ed.). The Mathematical Association of America. ISBN 0-88385-015-X. 

See also

  • Representation theory (group theory)

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Noncommutative algebraic geometry — is a branch of mathematics, and more specifically a direction in noncommutative geometry that studies the geometric properties of formal duals of non commutative algebraic objects such as rings as well as geometric objects derived from them (e.g …   Wikipedia

  • Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… …   Wikipedia

  • Ring theory — In abstract algebra, ring theory is the study of rings algebraic structures in which addition and multiplication are defined and have similar properties to those familiar from the integers. Ring theory studies the structure of rings, their… …   Wikipedia

  • Noncommutative logic — is an extension of linear logic which combines the commutative connectives of linear logic with the noncommutative multiplicative connectives of the Lambek calculus (see External links below). Its sequent calculus relies on the structure of order …   Wikipedia

  • Noncommutative topology — in mathematics is a term applied to the strictly C* algebraic part of the noncommutative geometry program. The program has its origins in the Gel fand duality between the topology of locally compact spaces and the algebraic structure of… …   Wikipedia

  • Noncommutative geometry — Not to be confused with Anabelian geometry. Noncommutative geometry (NCG) is a branch of mathematics concerned with geometric approach to noncommutative algebras, and with construction of spaces which are locally presented by noncommutative… …   Wikipedia

  • Noncommutative unique factorization domain — In mathematics, the noncommutative unique factorization domain is the noncommutative counterpart of the commutative or classical unique factorization domain (UFD). Example The ring of integral quaternions. If the coefficients a0, a1, a2, a3 are… …   Wikipedia

  • Domain (ring theory) — In mathematics, especially in the area of abstract algebra known as ring theory, a domain is a ring such that ab = 0 implies that either a = 0 or b = 0.[1] That is, it is a ring which has no left or right zero divisors. (Sometimes such a ring is… …   Wikipedia

  • Noetherian ring — In mathematics, more specifically in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non empty set of ideals has a maximal element. Equivalently, a ring is Noetherian if it… …   Wikipedia

  • Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”