Noether identities

Noether identities

In mathematics, Noether identities characterize the degeneracy of a Lagrangian system. Given a Lagrangian system and its Lagrangian L, Noether identities can be defined as a differential operator whose kernel contains a range of the Euler–Lagrange operator of L. Any Euler–Lagrange operator obeys Noether identities which therefore are separated into the trivial and non-trivial ones. A Lagrangian L is called degenerate if the Euler–Lagrange operator of L satisfies non-trivial Noether identities. In this case Euler–Lagrange equations are not independent.

Noether identities need not be independent, but satisfy first-stage Noether identities, which are subject to the second-stage Noether identities and so on. Higher-stage Noether identities also are separated into the trivial and non-trivial once. A degenerate Lagrangian is called reducible if there exist non-trivial higher-stage Noether identities. Yang–Mills gauge theory and gauge gravitation theory exemplify irreducible Lagrangian field theories.

Different variants of second Noether’s theorem state the one-to-one correspondence between the non-trivial reducible Noether identities and the non-trivial reducible gauge symmetries. Formulated in a very general setting, second Noether’s theorem associates to the Koszul–Tate complex of reducible Noether identities, parameterized by antifields, the BRST complex of reducible gauge symmetries parameterized by ghosts. This is the case of covariant classical field theory and Lagrangian BRST theory.

See also


  • Gomis, G., Paris, J., Samuel, S., Antibracket, antifields and gauge theory quantization, Phys. Rep. 259 (1995) 1.
  • Fulp, R., Lada, T., Stasheff, J.. Noether variational theorem II and the BV formalism, arXiv: math/0204079
  • Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G., The KT-BRST complex of a degenerate Lagrangian system, Lett. Math. Phys. 83 (2008) 237; arXiv: math-ph/0702097.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Noether's second theorem — In mathematics, Noether s second theorem relates symmetries of an action functional with a system of differential equations.[1] The action S of a physical system is an integral of a so called Lagrangian function L, from which the system s… …   Wikipedia

  • Noether's theorem — This article discusses Emmy Noether s first theorem, which derives conserved quantities from symmetries. For her related theorem on infinite dimensional Lie algebras and differential equations, see Noether s second theorem. For her unrelated… …   Wikipedia

  • Teoría de norma gravitacional — En teoría cuántica de campos, la teoría de norma gravitacional se refiere al esfuerzo que extiende la teoría Yang Mills, la cual da una explicación universal de las interacciones fundamentales, para describir la gravedad. El primer modelo de… …   Wikipedia Español

  • Калибровочная теория гравитации — Целью построения калибровочной теории гравитации является объединение гравитации с другими фундаментальными взаимодействиями, успешно описываемыми в рамках калибровочной теории. Первая калибровочная модель гравитации была предложена Р. Утиямой в… …   Википедия

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Path integral formulation — This article is about a formulation of quantum mechanics. For integrals along a path, also known as line or contour integrals, see line integral. The path integral formulation of quantum mechanics is a description of quantum theory which… …   Wikipedia

  • algebra — /al jeuh breuh/, n. 1. the branch of mathematics that deals with general statements of relations, utilizing letters and other symbols to represent specific sets of numbers, values, vectors, etc., in the description of such relations. 2. any of… …   Universalium

  • Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Ashkenazi Jews — For other meanings see Ashkenaz (disambiguation). Ashkenazi Jews (יהודי אשכנז Y hude Ashk naz in Biblical Hebrew; Y hudey Ashknoz in Ashkenazi Hebrew) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”