Nilradical of a Lie algebra
- Nilradical of a Lie algebra
-
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible.
The nilradical of a finite dimensional Lie algebra is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical of the Lie algebra . The quotient of a Lie algebra by its nilradical is a reductive Lie algebra . However, the corresponding short exact sequence
does not split in general (i.e., there isn't always a subalgebra complementary to in ). This is in contrast to the Levi decomposition: the short exact sequence
does split (essentially because the quotient is semisimple).
See also
References
- Fulton, William; Harris, Joe (1991), Representation theory. A first course, Graduate Texts in Mathematics, Readings in Mathematics, 129, New York: Springer-Verlag, ISBN 978-0-387-97495-8, MR1153249, ISBN 978-0-387-97527-6
- Onishchik, Arkadi L.; Vinberg, Ėrnest Borisovich (1994), Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras, Springer, ISBN 978-3540546832 .
Wikimedia Foundation.
2010.
Look at other dictionaries:
En (Lie algebra) — In mathematics, especially in Lie theory, E n is the Kac–Moody algebra whose Dynkin diagram is a line of n 1 points with an extra point attached to the third point from the end. Finite dimensional Lie algebras*E3 is another name for the Lie… … Wikipedia
Nilradical — may refer to: Nilradical of a ring Nilradical of a Lie algebra This disambiguation page lists mathematics articles associated with the same title. If an internal link led you here, you may wish to change t … Wikipedia
Parabolic Lie algebra — In algebra, a parabolic Lie algebra mathfrak p is a subalgebra of a semisimple Lie algebra mathfrak g satisfying one of the following two conditions: * mathfrak p contains a maximal solvable subalgebra (a Borel subalgebra) of mathfrak g; * the… … Wikipedia
Nilradical of a ring — For more radicals, see radical of a ring. In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring. In the non commutative ring case, more care is needed resulting in several related radicals … Wikipedia
Hermitian symmetric space — In mathematics, a Hermitian symmetric space is a Kähler manifold M which, as a Riemannian manifold, is a Riemannian symmetric space. Equivalently, M is a Riemannian symmetric space with a parallel complex structure with respect to which the… … Wikipedia
Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia
Levi decomposition — In Lie theory and representation theory, the Levi decomposition, discovered by Eugenio Elia Levi (1906), states that any finite dimensional real Lie algebra g is (as a vector space) the direct sum of two significant structural parts; namely,… … Wikipedia
E7½ — In mathematics, the Lie algebra E7½ is a subalgebra of E8 containing E7 defined by Landsberg and Manivel in orderto fill the hole in a dimension formula for the exceptional series E n of simple Lie algebras. This hole was observed by Cvitanovic,… … Wikipedia
List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… … Wikipedia
Noncommutative ring — In mathematics, more specifically modern algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, if R is a noncommutative ring, there exists a and b in R with a·b ≠ b·a, and conversely.… … Wikipedia