E7½

E7½

In mathematics, the Lie algebra E is a subalgebra of E8 containing E7 defined by Landsberg and Manivel in orderto fill the "hole" in a dimension formula for the exceptional series E"n" of simple Lie algebras. This hole was observed by Cvitanovic, Deligne, Cohen and de Man. E has dimension 190, and is not simple: as a representation of its subalgebra E7, it splits as E7 ⊕ (56) ⊕ R, where (56) is the 56-dimensional irreducible representation of E7. This representation has an invariant symplectic form, and this symplectic form equips (56) ⊕ R with the structure of a Heisenberg algebra; this Heisenberg algebra is the nilradical in E.

References

* A.M. Cohen, R. de Man, Computational evidence for Deligne's conjecture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I 322 (1996) 427--432.
* P. Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris, Série I 322 (1996) 321--326.
* P. Deligne, R. de Man, La série exceptionnelle de groupes de Lie II, C. R. Acad. Sci. Paris, Série I 323 (1996) 577--582.
*Landsberg, J. M. Manivel, L. [http://arxiv.org/abs/math.RT/0402157" The sextonions and E"] . Adv. Math. 201 (2006), no. 1, 143--179.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”