Newey–West estimator

Newey–West estimator

A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model when this model is applied in situations where the standard assumptions of regression analysis do not apply.[1] It was devised by Whitney K. Newey and Kenneth D. West in 1987, although there are a number of later variants.[2][3][4][5] The estimator is used to try to overcome autocorrelation, or correlation, and heteroskedasticity in the error terms in the models. This is often used to correct the effects of correlation in the error terms in regressions applied to time series data.

The problem in autocorrelation, often found in time series data, is that the error terms are correlated over time. This can be demonstrated in Q * , a matrix of sums of squares and cross products that involves σ(ij) and the rows of X. The least squares estimator b is a consistent estimator of β. This implies that the least squares residuals ei are "point-wise" consistent estimators of their population counterparts Ei. The general approach, then, will be to use X and e to devise an estimator of Q * .[6] What this means is that as the time between error terms increases, the correlation between the error terms decreases. The estimator thus can be used to improve the ordinary least squares (OLS) regression when the variables have heteroskedasticity or autocorrelation.

w_\ell=1 - \frac{\ell}{L+1}

See also

Notes

  1. ^ "Newey West estimator – Quantitative Finance Collector". http://www.mathfinance.cn/newey-west-estimator/. 
  2. ^ Newey, Whitney K; West, Kenneth D (1987). "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix". Econometrica 55 (3): 703–708. doi:10.2307/1913610. JSTOR 1913610. 
  3. ^ Andrews, D.W.K. (1991). "Heteroskedasticity and autocorrelation consistent covariance matrix estimation". Econometrica 59 (3): 817–858. doi:10.2307/2938229. JSTOR 2938229. 
  4. ^ Newey, Whitney K.; West, Kenneth D. (1994). "Automatic lag selection in covariance matrix estimation". Review of Economic Studies 61 (4): 631–654. doi:10.2307/2297912. JSTOR 2297912. 
  5. ^ Smith, Richard J. (2005). "Automatic positive semidefinate HAC covariance matrix and GMM estimation". Econometric Theory 21 (1): 158–170. doi:10.1017/S0266466605050103. 
  6. ^ Greene, William H. 1997. Econometric Analysis. 3rd edition

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Cochrane–Orcutt estimation — is a procedure in econometrics, which adjusts a linear model for serial correlation in the error term. It is named after statisticians D. Cochrane and G. H. Orcutt, who worked in the Department of Applied Economics, Cambridge (U.K.). Contents 1… …   Wikipedia

  • Coefficient de corrélation multiple — Régression linéaire multiple Pour les articles homonymes, voir Régression. Sommaire 1 Modèle théorique 1.1 Exemple 1.2 E …   Wikipédia en Français

  • Coefficient de détermination — Régression linéaire multiple Pour les articles homonymes, voir Régression. Sommaire 1 Modèle théorique 1.1 Exemple 1.2 E …   Wikipédia en Français

  • Regression lineaire multiple — Régression linéaire multiple Pour les articles homonymes, voir Régression. Sommaire 1 Modèle théorique 1.1 Exemple 1.2 E …   Wikipédia en Français

  • Régression linéaire multiple — Pour les articles homonymes, voir Régression. La régression linéaire multiple est une analyse statistique qui décrit les variations d une variable endogène associée aux variations de plusieurs variables exogènes. Par exemple, une analyse de… …   Wikipédia en Français

  • Régression multilinéaire — Régression linéaire multiple Pour les articles homonymes, voir Régression. Sommaire 1 Modèle théorique 1.1 Exemple 1.2 E …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”