Anumberofdifferentcoefficientsareusedfordifferentsituations. ThebestknownisthePearsonproduct-momentcorrelationcoefficient, whichisobtainedbydividingthecovarianceofthetwovariablesbytheproductoftheirstandarddeviations. Despiteitsname, itwasfirstintroducedbyFrancisGalton.Citejournal author = Rodgers, J. L. andNicewander, W. A. title = Thirteenwaystolookatthecorrelationcoefficient journal = TheAmericanStatistician year = 1988 volume = 42 pages = 59–66 doi = 10.2307/2685263]
Pearson'sproduct-momentcoefficient
Mathematicalproperties
Thecorrelationcoefficientρ"X, Y"betweentworandomvariables "X" and "Y" withexpectedvaluesμ"X"andμ"Y"andstandarddeviationsσ"X"andσ"Y"isdefinedas:
Ifthevariablesareindependentthenthecorrelationis0, buttheconverseisnottruebecausethecorrelationcoefficientdetectsonlylineardependenciesbetweentwovariables. Hereisanexample:Supposetherandomvariable "X" isuniformlydistributedontheintervalfrom−1to1, and "Y" = "X"2. Then "Y" iscompletelydeterminedby "X", sothat "X" and "Y" aredependent, buttheircorrelationiszero; theyareuncorrelated. However, inthespecialcasewhen "X" and "Y" arejointlynormal, uncorrelatednessisequivalenttoindependence.
Ifwehaveaseriesof "n" measurementsof "X" and "Y" writtenas "xi" and "yi" where "i" = 1, 2, ..., "n", thenthePearsonproduct-momentcorrelationcoefficientcanbeusedtoestimatethecorrelationof "X" and "Y" . ThePearsoncoefficientisalsoknownasthe "samplecorrelationcoefficient". ThePearsoncorrelationcoefficientisthenthebestestimateofthecorrelationof "X" and "Y" . ThePearsoncorrelationcoefficientiswritten:
wherear{x} andar{y} arethesamplemeansof "X" and "Y" , "s""x"and "s""y"arethesamplestandarddeviationsof "X" and "Y" andthesumisfrom "i" = 1to "n". Aswiththepopulationcorrelation, wemayrewritethisas
Notethatsincethesamplecorrelationcoefficientissymmetricin "xi" and "yi" , wewillgetthesamevalueforafitof "yi" to "xi" :
:r_{xy}^2=1-frac{s_{x|y}^2}{s_x^2}.
Thisequationalsogivesanintuitiveideaofthecorrelationcoefficientforhigherdimensions. Justastheabovedescribedsamplecorrelationcoefficientisthefractionofvarianceaccountedforbythefitofa1-dimensionallinearsubmanifoldtoasetof2-dimensionalvectors ("xi" , "yi" ), sowecandefineacorrelationcoefficientforafitofan "m"-dimensionallinearsubmanifoldtoasetof "n"-dimensionalvectors. Forexample, ifwefitaplane "z = a + bx + cy" toasetofdata ("xi" , "yi" , "zi" ) thenthecorrelationcoefficientof "z" to "x" and "y" is
:r^2=1-frac{s_{z|xy}^2}{s_z^2}.
ThedistributionofthecorrelationcoefficienthasbeenexaminedbyR. A. Fisher [Citejournal author = R. A. Fisher title = Frequencydistributionofthevaluesofthecorrelationcoefficientinsamplesfromanindefinitelylargepopulation journal = Biometrika volume = 10 pages = 507–521 year = 1915] [Citejournal author = R. A. Fisher title = Ontheprobableerrorofacoefficientofcorrelationdeducedfromasmallsample journal = Metron year = 1921] andA. K. Gayen. [Citejournal author = A. K. Gayen title = Thefrequencydistributionoftheproductmomentcorrelationcoefficientinrandomsamplesofanysizedrawfromnon-normaluniverses journal = Biometrika year = 1951 volume = 38 pages = 219–247]
Itisalwayspossibletoremovethecorrelationbetweenzero-meanrandomvariableswithalineartransform, eveniftherelationshipbetweenthevariablesisnonlinear. Supposeavectorof "n" randomvariablesissampled "m" times. Let "X" beamatrixwhereX_{i,j} isthe "j"thvariableofsample "i". LetZ_{r,c} bean "r" by "c" matrixwitheveryelement1. Then "D" isthedatatransformedsoeveryrandomvariablehaszeromean, and "T" isthedatatransformedsoallvariableshavezeromean, unitvariance, andzerocorrelationwithallothervariables. Thetransformedvariableswillbeuncorrelated, eventhoughtheymaynotbeindependent.
:D = X -frac{1}{m} Z_{m,m} X
:T = D (D^TD)^{-frac{1}{2
whereanexponentof -1/2representsthematrixsquarerootoftheinverseofamatrix. Thecovariancematrixof "T" willbetheidentitymatrix. Ifanewdatasample "x" isarowvectorof "n" elements, thenthesametransformcanbeappliedto "x" togetthetransformedvectors "d" and "t":
corrélation — [ kɔrelasjɔ̃ ] n. f. • 1718; correlacion v. 1420; bas lat. correlatio 1 ♦ Philos. Rapport entre deux phénomènes (⇒ corrélat) qui varient en fonction l un de l autre. ⇒ correspondance, interdépendance, réciprocité. ♢ Statist. Coefficient de… … Encyclopédie Universelle
Correlation — Corrélation Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom … Wikipédia en Français
Correlation — Cor re*la tion ( l? sh?n), n. [LL. correlatio; L. cor + relatio: cf. F. corr[ e]lation. Cf. {Correlation}.] Reciprocal relation; corresponding similarity or parallelism of relation or law; capacity of being converted into, or of giving place to,… … The Collaborative International Dictionary of English
correlation — I noun analogy, chain, collation, comparison, connection, corollary, correspondence, counterpart, equivalence, functionality, interchange, interconnection, interdependence, likeness, mutual, mutuality, parity, proportion, quid pro quo,… … Law dictionary
correlation — 1560s, from M.Fr. corrélation, from cor together (see COM (Cf. com )) + relation (see RELATION (Cf. relation)) … Etymology dictionary
correlation — [kôr΄ə lā′shən, kär΄ə lā′shən] n. [ML correlatio: see COM & RELATION] 1. mutual relationship or connection 2. the degree of relative correspondence, as between two sets of data [a correlation of 75%] 3. a correlating or being correlated… … English World dictionary
Correlation — (v. lat.), 1) gegenseitige Beziehung; 2) Beziehung von 2 Wörtern od. Sätzen auf einander, so daß das od. der eine die Frage od. den Satz, das od. der andere die Antwort od. die Vergleichung enthält. Hieher gehören Comparatiwerhältnisse u.… … Pierer's Universal-Lexikon
corrélation — CORRÉLATION. s. fém. Relation réciproque entre deux choses. Il n est d usage que dans le didactique. Les termes de père et de fils emportentcorrélation … Dictionnaire de l'Académie Française 1798
correlation — ► NOUN 1) a mutual relationship. 2) the process of correlating two or more things. 3) Statistics interdependence of variable quantities … English terms dictionary