Nernst–Planck equation

Nernst–Planck equation

The Nernst–Planck equation is a conservation of mass equation used to describe the motion of chemical species in a fluid medium. It describes the flux of ions under the influence of both an ionic concentration gradient \nabla c and an electric field E=-\nabla \phi. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.[1][2]

The Nernst–Planck equation is given by:

\frac{\partial c}{\partial t} = \nabla \cdot \left[ D \nabla c - u c + \frac{Dze}{k_B T}c\nabla \phi \right]

Where t is time, D is the diffusivity of the chemical species, c is the concentration of the species, and u is the velocity of the fluid, z is the valence of ionic species, e is the elementary charge, kB is the Boltzmann constant and T is the temperature.

If the diffusing particles are themselves charged they influence the electric field on moving. Hence the Nernst–Planck equation is applied in describing the ion-exchange kinetics in soils[3].

Notes

  1. ^ Kirby BJ. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices: Chapter 11: Species and Charge Transport. http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidicsch11.html. 
  2. ^ Probstein R (1994). Physicochemical Hydrodynamics. 
  3. ^ Sparks, D.L. (1988). Kinetics of Soil Chemical Processes.. Academic Press, New York. pp. 101ff 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Nernst-Planck equation — The Nernst Planck equation describes the flux of ions through a diffusive membrane under the influence of both an ionic concentration gradient (X) and electric potential (V).It is defined :Phi = D abla X P X abla VWhere D is a set of constants… …   Wikipedia

  • Nernst equation — In electrochemistry, the Nernst equation is an equation that can be used (in conjunction with other information) to determine the equilibrium reduction potential of a half cell in an electrochemical cell. It can also be used to determine the… …   Wikipedia

  • Walther Nernst — Born 25 June 1864(1864 06 25) Briesen, West Prussia/ …   Wikipedia

  • Convection–diffusion equation — The convection–diffusion equation is a parabolic partial differential equation combining the diffusion equation and the advection equation, which describes physical phenomena where particles or energy (or other physical quantities) are… …   Wikipedia

  • Équation de Maxwell — Équations de Maxwell  Ne doit pas être confondu avec Relations de Maxwell. Les équations de Maxwell, aussi appelées équations de Maxwell Lorentz, sont des lois fondamentales de la physique. Elles constituent les postulats de base de l… …   Wikipédia en Français

  • Équation de Maxwell-Gauss — Équations de Maxwell  Ne doit pas être confondu avec Relations de Maxwell. Les équations de Maxwell, aussi appelées équations de Maxwell Lorentz, sont des lois fondamentales de la physique. Elles constituent les postulats de base de l… …   Wikipédia en Français

  • Nernst, Walther Hermann — born June 25, 1864, Briesen, Prussia died Nov. 18, 1941, Muskau, Ger. German scientist, one of the founders of modern physical chemistry. He taught at the Universities of Göttingen and Berlin until forced to retire in 1933 by the Nazi regime.… …   Universalium

  • Nernst — Walther Hermann Nernst Walther Hermann Nernst Walther Hermann Nernst (25 juin 1864 18 novembre 1941) est un physicien et chimiste allemand. Il a mené de nombreuses recherches dans les domaines de l électrochimie, la thermodynamique, la chimie du… …   Wikipédia en Français

  • Nernst heat theorem — Walther Nernst The Nernst heat theorem was formulated by Walther Nernst early in the twentieth century and was used in the development of the third law of thermodynamics. Contents 1 The …   Wikipedia

  • Max Planck — Pour les articles homonymes, voir Planck. Max Planck Naissance 23 avril 1858 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”