N-group (finite group theory)

N-group (finite group theory)

In mathematical finite group theory, an N-group is a group all of whose local subgroups (that is, the normalizers of nontrivial p-subgroups) are solvable groups. The non-solvable ones were classified by Thompson during his work on finding all the minimal finite simple groups.

Contents

Simple N-groups

The simple N-groups were classified by John Thompson (1968, 1970, 1971, 1973, 1974, 1974b) in a series of 6 papers totaling about 400 pages.

The simple N-groups consist of the special linear groups PSL2(q),PSL3(3), the Suzuki groups Sz(22n+1), the unitary group U3(3), the alternating group A7, the Mathieu group M11, and the Tits group. (The Tits group was overlooked in Thomson's original announcement in 1963, which was made before the discovery of the Tits group, but Hearn pointed out that it was also a simple N-group.) More generally Thompson showed that any non-solvable N-group is a subgroup of Aut(G) containing G for some simple N-group G.

Gorenstein & Lyons (1976) generalized Thompson's theorem to the case of groups where all 2-local subgroups are solvable. The only extra simple groups that appear are the unitary group U3(q).

Proof

Gorenstein (1980, 16.5) gives a summary of Thompson's classification of N-groups.

The primes dividing the order of the group are divided into four classes π1, π2, π3, π4 as follows

  • π1 is the set of primes p such that a Sylow p-subgroup is nontrivial and cyclic.
  • π2 is the set of primes p such that a Sylow p-subgroup P is non-cyclic but SCN3(P) is empty
  • π3 is the set of primes p such that a Sylow p-subgroup P has SCN3(P) nonempty and normalizes a nontrivial abelian subgroup of order prime to p.
  • π4 is the set of primes p such that a Sylow p-subgroup P has SCN3(P) nonempty but does not normalize a nontrivial abelian subgroup of order prime to p.

The proof is subdivided into several cases depending on which of these four classes the prime 2 belongs to, and also on an integer e, which is the largest integer for which there is an elementary abelian subgroup of rank e normalized by a nontrivial 2-subgroup intersecting it trivially.

  • Thompson (1968) Gives a general introduction, stating the main theorem and proving many preliminary lemmas.
  • Thompson (1970) characterizes the groups E2(3) and S4(3) (in Thompson's notation; these are the exceptional group G2(3) and the symplectic group Sp4(3)) which are not N-groups but whose characterizations are needed in the proof of the main theorem.
  • Thompson (1971) covers the case where 2∉π4. Theorem 11.2 shows that if 2∈π2 then the group is PSL2(q), M11, A7, U3(3), or PSL3(3). The possibility that 2∈π3 is ruled out by showing that any such group must be a C-group and using Suzuki's classification of C-groups to check that none of the groups found by Suzuki satisfy this condition.
  • Thompson (1973) and Thompson (1974) cover the cases when 2∈π4 and e≥3, or e=2. He shows that either G is a C-group so a Suzuki group, or satisfies his characterization of the groups E2(3) and S4(3) in his second paper, which are not N-groups.
  • Thompson (1974) covers the case when 2∈π4 and e=1, where the only possibilities are that G is a C-group or the Tits group

Consequences

A minimal simple group is a non-cyclic simple group all of whose proper subgroups are solvable. The complete list of minimal finite simple groups is given as follows Thompson (1968, corollary 1)

  • PSL2(2p), p a prime.
  • PSL2(3p), p an odd prime.
  • PSL2(p), p > 3 a prime congruent to 2 or 3 mod 5
  • Sz(2p), p an odd prime.
  • PSL3(3)

In other words a non-cyclic finite simple group must have a subquotient isomorphic to one of these groups.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… …   Wikipedia

  • Finite model theory — is a subfield of model theory that focuses on properties of logical languages, such as first order logic, over finite structures, such as finite groups, graphs, databases, and most abstract machines. It focuses in particular on connections… …   Wikipedia

  • Lagrange's theorem (group theory) — Lagrange s theorem, in the mathematics of group theory, states that for any finite group G , the order (number of elements) of every subgroup H of G divides the order of G . Lagrange s theorem is named after Joseph Lagrange. Proof of Lagrange s… …   Wikipedia

  • Cauchy's theorem (group theory) — Cauchy s theorem is a theorem in the mathematics of group theory, named after Augustin Louis Cauchy. It states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G ), then G contains an element… …   Wikipedia

  • History of group theory — The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory: the theory of algebraic equations, number theory and geometry.… …   Wikipedia

  • Glossary of group theory — A group ( G , •) is a set G closed under a binary operation • satisfying the following 3 axioms:* Associativity : For all a , b and c in G , ( a • b ) • c = a • ( b • c ). * Identity element : There exists an e ∈ G such that for all a in G , e •… …   Wikipedia

  • List of group theory topics — Contents 1 Structures and operations 2 Basic properties of groups 2.1 Group homomorphisms 3 Basic types of groups …   Wikipedia

  • Geometric group theory — is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the… …   Wikipedia

  • Order (group theory) — This article is about order in group theory. For order in other branches of mathematics, see Order (mathematics). For order in other disciplines, see Order. In group theory, a branch of mathematics, the term order is used in two closely related… …   Wikipedia

  • Elementary group theory — In mathematics, a group is defined as a set G and a binary operation on G , called product and denoted by infix * . Product obeys the following rules (also called axioms). Let a , b , and c be arbitrary elements of G . Then: *A1, Closure. a * b… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”