Fourier–Mukai transform

Fourier–Mukai transform

The Fourier–Mukai transform or Mukai–Fourier transform is a transformation used in algebraic geometry. It is somewhat analogous to the classical Fourier transform used in analysis.[clarification needed]

Definition

Let X be an abelian variety and \hat X be its dual variety. We denote by \mathcal P the Poincaré bundle on

X \times \hat X,

normalized to be trivial on the fibers at zero. Let p and \hat p be the canonical projections.

The Fourier-Mukai functor is then

R\mathcal S: \mathcal F \in D(X) \mapsto R\hat p_\ast (p^\ast \mathcal F \otimes \mathcal P) \in D(\hat X)

The notation here: D means derived category of coherent sheaves, and R is the higher direct image functor, at the derived category level.

There is a similar functor

R\widehat{\mathcal S} : D(\hat X) \to D(X). \,

Properties

Let g denote the dimension of X.

The Fourier-Mukai transformation is nearly involutive :

R\mathcal S \circ R\widehat{\mathcal S} = (-1)^\ast [-g]

It transforms Pontrjagin product in tensor product and conversely.

R\mathcal S(\mathcal F \ast \mathcal G)  = R\mathcal S(\mathcal F) \otimes R\mathcal S(\mathcal G)
R\mathcal S(\mathcal F \otimes \mathcal G)  = R\mathcal S(\mathcal F) \ast R\mathcal S(\mathcal G)[g]

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Transformee de Fourier-Mukai — Transformée de Fourier Mukai La transformée de Fourier Mukai est un analogue en géométrie algébrique de la transformée de Fourier usuelle utilisée en analyse. Définition Soit X une variété abélienne et sa variété abélienne duale. On note le fibré …   Wikipédia en Français

  • Transformée de fourier-mukai — La transformée de Fourier Mukai est un analogue en géométrie algébrique de la transformée de Fourier usuelle utilisée en analyse. Définition Soit X une variété abélienne et sa variété abélienne duale. On note le fibré de Poincaré sur , normalisé… …   Wikipédia en Français

  • Mukai-Fourier transform — The Mukai Fourier transform is a transformation used in algebraic geometry. It is somewhat analogous to the classical Fourier transform used in analysis.DefinitionLet X be an abelian variety and hat X be its dual variety. We denote by mathcal P… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Timeline of category theory and related mathematics — This is a timeline of category theory and related mathematics. By related mathematics is meant first hand * Homological algebra * Homotopical algebra * Topology using categories, especially algebraic topology * Categorical logic * Foundations of… …   Wikipedia

  • Intermediate polar — Diagram of an intermediate polar. Matter flows from the companion star into an accretion disk around the white dwarf, but is disrupted by the white dwarf s magnetic field. An Intermediate Polar (also DQ Herculis Star) is a type of cataclysmic… …   Wikipedia

  • Equations defining abelian varieties — In mathematics, the concept of abelian variety is the higher dimensional generalization of the elliptic curve. The equations defining abelian varieties are a topic of study because every abelian variety is a projective variety. In dimension d ge; …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”