Monsky–Washnitzer cohomology

Monsky–Washnitzer cohomology

In algebraic geometry, Monsky–Washnitzer cohomology is a p-adic cohomology theory defined for non-singular affine varieties over fields of positive characteristic p introduced by Monsky and Washnitzer (1968) and Monsky (1968), who were motivated by the work of Dwork (1960). The idea is to lift the variety to characteristic 0, and then take a suitable subalgebra of the algebraic de Rham cohomology of Grothendieck (1966). The construction was simplified by van der Put (1986). Its extension to more general varieties is called rigid cohomology.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Paul Monsky — (born June 17, 1936) is an American mathematician and professor at Brandeis University.He received his Ph.D. in 1962 from the University of Chicago under the supervision of Walter Bailey. He has introduced the Monsky Washnitzer cohomology (see… …   Wikipedia

  • Paul Monsky — (* 17. Juni 1936) ist ein US amerikanischer Mathematiker, der sich mit Zahlentheorie, algebraischer Geometrie und kommutativer Algebra beschäftigt. Monsky studierte mit einem Stipendium der National Science Foundation am Swarthmore College und an …   Deutsch Wikipedia

  • Gerard Washnitzer — (* 1926 in New York City) ist ein US amerikanischer Mathematiker. Washnitzer studierte an der Princeton University unter anderem bei Emil Artin und wurde 1950 bei Salomon Bochner promoviert (A Dirichlet Principle for analytic functions of several …   Deutsch Wikipedia

  • Crystalline cohomology — In mathematics, crystalline cohomology is a Weil cohomology theory for schemes introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974). Its values are modules over rings of Witt vectors over the base… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”