- Mironenko reflecting function
-
The reflecting function of a dynamical system connects the past state of it with the future state of it by the formula The concept of the reflecting function was introduсed by Vladimir Ivanovich Mironenko.
Contents
Definition
For the differential system with the general solution φ(t;t0,x) in Cauchy form Reflecting Function is defined by formula F(t,x) = φ( − t;t,x).
Application
If a vector-function is periodic in with respect to , then is a transformation (Poincaré map) periodic in of the differential system Therefore the knowledge of the Reflecting Function give us the opportunity to find out the initial date of periodic solutions of the differential system and investigate the stability of those solutions.
For the Reflecting Function of the system the basic relation
is holding.
Therefore we have an opportunity sometimes to find Poincaré map of the non-integrable in quadrature systems even in elementary functions.
Literature
- Мироненко В. И. Отражающая функция и периодические решения дифференциальных уравнений. — Минск, Университетское, 1986. — 76 с.
- Мироненко В. И. Отражающая функция и исследование многомерных дифференциальных систем. — Гомель: Мин. образов. РБ, ГГУ им. Ф. Скорины, 2004. — 196 с.
Links
Categories:- Differential equations
Wikimedia Foundation. 2010.