Dickey-Fuller test

Dickey-Fuller test

In statistics, the Dickey-Fuller test tests whether a unit root is present in an autoregressive model. It is named after the statisticians D. A. Dickey and W. A. Fuller, who developed the test in the 1970s.

Explanation

A simple AR(1) model is

: y_{t}= ho y_{t-1}+u_{t},

where "y""t" is the variable of interest, "t" is the time index, "ρ" is a coefficient, and "u""t" is the error term. A unit root is present if |"ρ"| = 1. The model would be non-stationary in this case. Naturally it would be even more non-stationary if |"ρ"| ≥ 1.

The regression model can be written as

: Delta y_{t}=( ho-1)y_{t-1}+u_{t}=delta y_{t-1}+u_{t},

where Δ is the first difference operator. This model can be estimated and testing for a unit root is equivalent to testing "δ" = 0 (where "δ" = "ρ" − 1). Since the test is done over the residual term rather than raw data, it is not possible to use standard t-distribution to as critical values. Therefore this statistic "τ" has a specific distribution simply known as the Dickey-Fuller table.

There are three main versions of the test:

1. Test for a unit root:

:: Delta y_{t}=delta y_{t-1}+u_{t}

2. Test for a unit root with drift:

:: Delta y_{t}=a_0+delta y_{t-1}+u_{t}

3. Test for a unit root with drift and deterministic time trend:

: Delta y_{t}=a_0+a_1t+delta y_{t-1}+u_{t}

Each version of the test has its own critical value which depends on the size of the sample. In each case, the null hypothesis is that there is a unit root, "δ" = 0. The tests have low Statistical power in that they often cannot distinguish between true unit-root processes ("δ" = 0)and near unit-root processes ("δ" is close to zero). This is called the "near observation equivalence" problem.

The intuition behind the test is as follows. If the series "y" is (trend-)stationary, then it has a tendency to return to a constant (or deterministically trending) mean. Therefore large values will tend to be followed by smaller values (negative changes), and small values by larger values (positive changes). Accordingly, the level of the series will be a significant predictor of next period's change, and will have a negative coefficient. If, on the other hand, the series is integrated, then positive changes and negative changes will occur with probabilities that do not depend on the current level of the series; in a random walk, where you are now does not affect which way you will go next.

There is also an extension called the augmented Dickey-Fuller test (ADF), which removes all the structural effects (autocorrelation) in the time series and then tests using the same procedure.

References

Dickey, D.A. and W.A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” "Journal of the American Statistical Association", 74, p. 427–431.

ee also

* Augmented Dickey-Fuller test
* Phillips-Perron test
* Unit root


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Dickey–Fuller test — In statistics, the Dickey–Fuller test tests whether a unit root is present in an autoregressive model. It is named after the statisticians D. A. Dickey and W. A. Fuller, who developed the test in 1979.[1] Contents 1 Explanation 2 Dealing with… …   Wikipedia

  • Dickey-Fuller-Test — Als Dickey Fuller Tests bezeichnet man in der Statistik die von D. Dickey und W. Fuller in den 70er Jahren entwickelten Einheitswurzeltests, die die Nullhypothese eines stochastischen Prozesses mit Einheitswurzel gegen die Alternative eines… …   Deutsch Wikipedia

  • Dickey-Fuller-Test — ADF Test; von D. Dickey und W. Fuller entwickelter ⇡ Einheitswurzeltest, bei dem die erste Differenz einer Zeitreihe auf den gelagten (⇡ Lag) absoluten Wert der gleichen Zeitreihe regressiert wird. Liegt der Regressionskoeffizient nahe bei Null,… …   Lexikon der Economics

  • Augmented Dickey-Fuller test — In statistics and econometrics, an augmented Dickey Fuller test (ADF) is a test for a unit root in a time series sample. It is an augmented version of the Dickey Fuller test for a larger and more complicated set of time series models.The… …   Wikipedia

  • Augmented Dickey-Fuller-Test — Als Dickey Fuller Tests bezeichnet man in der Statistik die von D. Dickey und W. Fuller in den 70er Jahren entwickelten Einheitswurzeltests, die die Nullhypothese eines stochastischen Prozesses mit Einheitswurzel gegen die Alternative eines… …   Deutsch Wikipedia

  • Dickey — ist der Name mehrerer Personen: Bill Dickey (1907–1993), US amerikanischer Baseballspieler David Dickey (* 1945), US amerikanischer Statistiker Donald Ryder Dickey (1887–1932) US amerikanischer Tierfotograph, Ornithologe und Mammaloge Henry L.… …   Deutsch Wikipedia

  • ADF-Test — ⇡ Dickey Fuller Test …   Lexikon der Economics

  • David Dickey — David Alan Dickey (* 22. Dezember 1945 in Painesville[1] oder Cleveland[2], Ohio, USA) ist ein US amerikanischer Statistiker. Inhaltsverzeichnis 1 Leben und Wirken 2 Werke (Auswahl) …   Deutsch Wikipedia

  • Wayne Fuller — Wayne Arthur Fuller (* 15. Juni 1931 in Brooks[1] oder Corning[2], Iowa, Vereinigte Staaten) ist ein US amerikanischer Statistiker. Inhaltsverzeichnis 1 Leben und Wirken 2 Auszeichnungen …   Deutsch Wikipedia

  • David Dickey — David Alan Dickey is an American statistician who has specialised in time series analysis. He is a William Neal Reynolds Professor[1] in the Department of Statistics at North Carolina State University. The Dickey–Fuller test is named for him and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”