Douglas Ravenel

Douglas Ravenel
Douglas C. Ravenel
Born 1947
Nationality  United States
Fields Mathematics
Institutions University of Rochester
Alma mater Brandeis University
Doctoral advisor Edgar H. Brown, Jr.
Doctoral students Andrew Salch
Known for Ravenel Conjectures
Work on Adams–Novikov spectral sequence

Douglas Conner Ravenel (born 1947) is an American mathematician known for work in algebraic topology.

Contents

Life

He received his Ph.D. from Brandeis University in 1972 under the direction of Edgar H. Brown, Jr. with a thesis on exotic characteristic classes of spherical fibrations. From 1971 to 1973 he was instructor at the MIT and 1974/75 he was visiting the Institute for Advanced Study. He became assistant professor at the Columbia University in 1973 and at the University of Washington in Seattle in 1976, where he became associate professor in 1978 and professor in 1981. From 1977 to 1979 he was Sloan Fellow. Since 1988 he is professor at the University of Rochester. He was invited speaker at the International Congress of Mathematicians in Helsinki, 1978, and is an editor of the New York Journal of Mathematics since 1994.

Work

Ravenel's main area of work is stable homotopy theory. Two of his most famous papers are Periodic phenomena in the Adams–Novikov spectral sequence, which he wrote together with H. R. Miller and W. S. Wilson, (Annals of Mathematics, 106 (1977), 469–516) and Localization with respect to certain periodic homology theories (Amer. J. Math., 106 (1984), 351–414).

In first of these two papers, the authors explore the stable homotopy groups of spheres by analyzing the E2-term of the Adams–Novikov spectral sequence. The authors set up the so-called chromatic spectral sequence relating this E2-term to the cohomology of the Morava stabilizer group, which exhibits certain periodic phenomena in the Adams–Novikov spectral sequence and can be seen as the beginning of chromatic homotopy theory. Applying this, the authors compute the second line of the Adams–Novikov spectral sequence and establish the non-triviality of a certain family in the stable homotopy groups of spheres. In all of this, the authors use work by Morava and themselves on Brown–Peterson cohomology and Morava K-theory.

In the second paper, Ravenel expands these phenomena to a global picture of stable homotopy theory leading to the Ravenel conjectures. In this picture, complex cobordism and Morava K-theory control many qualitative phenomena, which were understood before only in special cases. Here Ravenel uses localization in the sense of Bousfield in a crucial way. All but one of the Ravenel conjectures were proved by Ethan Devinatz, Mike Hopkins and Jeff Smith not long after the article got published. Frank Adams said on that occasion:

At one time it seemed as if homotopy theory was utterly without system; now it is almost proved that systematic effects predominate.[1]

In further work, Ravenel calculates the Morava-K theories of several spaces and proves important theorems in chromatic homotopy theory together with Hopkins. He was also one of the founders of elliptic cohomology. In 2009, he solved together with Hill and Hopkins the Kervaire invariant 1 problem for large dimensions.

Ravenel has written two books, the first on the calculation of the stable homotopy groups of spheres and the second on the Ravenel conjectures.

References

  • Complex cobordism and the stable homotopy groups of spheres, Academic Press 1986, 2. Auflage, AMS 2003, online:[1]
  • Nilpotency and Periodicity in stable homotopy theory, Princeton, Annals of Mathematical Studies 1992

External links

  1. ^ J. F. Adams, The work of M. J. Hopkins, The selected works of J. Frank Adams, Vol. II (J. P. May and C. B. Thomas, eds.), Cambridge Univ. Press, Cambridge, 1992, S. 525–529.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Douglas Ravenel — Douglas Conner Ravenel (* 17. Februar 1947 in Alexandria (Virginia)) ist ein US amerikanischer Mathematiker, der sich mit algebraischer Topologie beschäftigt, insbesondere mit Homotopietheorie. Douglas Ravenel in Seattle 1978 Inhaltsverzeichnis …   Deutsch Wikipedia

  • Ravenel — ist der Familienname folgender Personen: Arthur Ravenel (* 1927), US amerikanischer Politiker Douglas Ravenel (* 1947), US amerikanischer Mathematiker Henry William Ravenel (1814–1887), US amerikanischer Botaniker Ravenel ist der Name mehrerer… …   Deutsch Wikipedia

  • Douglas C. Ravenel — Douglas Conner Ravenel (* 1947 in Alexandria (Virginia)) ist ein US amerikanischer Mathematiker, der sich mit algebraischer Topologie beschäftigt, speziell Homotopietheorie. Leben und Wirken Ravenel studierte am Oberlin College (Bachelor… …   Deutsch Wikipedia

  • Michael J. Hopkins — Mike Hopkins in Oberwolfach 2009 Born April 18, 1958 …   Wikipedia

  • Liste der Biografien/Rat–Raz — Biografien: A B C D E F G H I J K L M N O P Q …   Deutsch Wikipedia

  • Michael J. Hopkins — Michael Jerome Hopkins (* 18. April 1958 in Alexandria (Virginia)) ist ein US amerikanischer Mathematiker, der sich mit algebraischer Topologie, im speziellen der Homotopietheorie, beschäftigt. Hopkins 2009 Hopkins, der nach eigener Aussage… …   Deutsch Wikipedia

  • Michel Kervaire — Michel André Kervaire (* 26. April 1927 in Częstochowa, Polen; † 19. November 2007 in Genf) war ein Schweizer Mathematiker, der sich vor allem mit Topologie (Differentialtopologie, algebraische Topologie) und Algebra beschäftigte. Er war der Sohn …   Deutsch Wikipedia

  • Robert Stong — Robert Evert Stong (* 23. August 1936 in Oklahoma City; † 10. April 2008) war ein US amerikanischer Mathematiker, der sich mit algebraischer Topologie (insbesonder Kobordismentheorie) beschäftigte. Stong wurde 1962 an der University of Chicago… …   Deutsch Wikipedia

  • Charleston, South Carolina — Charleston   City   City of Charleston …   Wikipedia

  • Complex cobordism — In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”