Discrete Chebyshev polynomials
- Discrete Chebyshev polynomials
-
In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev (1864) and rediscovered by Gram (1883).
Definition
They are defined as follows: Let f be a smooth function defined on the closed interval whose values are known explicitly only at points , where k and m are integers and . The task is to approximate f as a polynomial of degree n < m. Now consider a positive semi-definite bilinear form
where g and h are continuous on and let
be a discrete semi-norm. Now let φk be a family of polynomials orthogonal to
which have a positive leading coefficient and which are normalized in such a way that
The φk are called discrete Chebyshev (or Gram) polynomials.[1]
References
- ^ R.W. Barnard; G. Dahlquist, K. Pearce, L. Reichel, K.C. Richards (1998). "Gram Polynomials and the Kummer Function". Journal of Approximation Theory 94: 128–143. doi:10.1006/jath.1998.3181.
- Chebyshev, P. (1864), "Sur l'interpolation", Zapiski Akademii Nauk 4, Oeuvres Vol 1 p. 539–560, http://www.archive.org/stream/oeuvresdepltche01chebrich#page/n551/mode/2up
- Gram, J. P. (1883), "Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate" (in German), Journal für die reine und angewandte Mathematik 94: 41–73, JFM 15.0321.03, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002158604
Wikimedia Foundation.
2010.
Look at other dictionaries:
Discrete orthogonal polynomials — In mathematics, a sequence of discrete orthogonal polynomials is a sequence of polynomials that are pairwise orthogonal with repect to a discrete measure. Examples include the discrete Chebyshev polynomials, Charlier polynomials, Krawtchouk… … Wikipedia
Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… … Wikipedia
Discrete cosine transform — A discrete cosine transform (DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions oscillating at different frequencies. DCTs are important to numerous applications in science and engineering, from lossy… … Wikipedia
Pafnuty Chebyshev — Chebyshev redirects here. For other uses, see Chebyshev (disambiguation). Pafnuty Chebyshev Pafnuty Lvovich Chebyshev Born May 16, 1821 … Wikipedia
Chebyshev filter — Linear analog electronic filters Network synthesis filters Butterworth filter Chebyshev filter Elliptic (Cauer) filter Bessel filter Gaussian filter Optimum L (Legendre) filter Linkwitz Riley filter … Wikipedia
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia
Clenshaw–Curtis quadrature — and Fejér quadrature are methods for numerical integration, or quadrature , that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables x = cos θ and use a discrete… … Wikipedia
List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia
Dessin d'enfant — In mathematics, a dessin d enfant (French for a child s drawing , plural dessins d enfants, children s drawings ) is a type of graph drawing used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute… … Wikipedia
Normal distribution — This article is about the univariate normal distribution. For normally distributed vectors, see Multivariate normal distribution. Probability density function The red line is the standard normal distribution Cumulative distribution function … Wikipedia