Dedekind–Hasse norm

Dedekind–Hasse norm

In mathematics, in particular the study of abstract algebra, a Dedekind–Hasse norm is a function on an integral domain that generalises the notion of a Euclidean function on Euclidean domains.

Contents

Definition

Let R be an integral domain and g : R → Z≥ 0 be a function from R to the non-negative rational integers. Denote by 0R the additive identity of R. The function g is called a Dedekind–Hasse norm on R if the following three conditions are satisfied:

  • g(0R) = 0,
  • if a ≠ 0R then g(a) > 0,
  • for any nonzero elements a and b in R either:
    • b divides a in R, or
    • there exist elements x and y in R such that 0 < g(xa − yb) < g(b).

The third condition is a slight generalisation of condition (EF1) of Euclidean functions, as defined on the Euclidean domain article. If the value of x can always be taken as 1 then g will in fact be a Euclidean function and R will hence be a Euclidean domain.

Integral and principal ideal domains

The notion of a Dedekind–Hasse norm was developed independently by Richard Dedekind and, later, by Helmut Hasse. They both noticed it was precisely the extra piece of structure needed to turn an integral domain into a principal ideal domain. To wit, they proved that an integral domain R is a principal ideal domain if and only if R has a Dedekind–Hasse norm.

Example

Let F be a field and consider the polynomial ring F[X]. The function g on this domain that maps a nonzero polynomial p to 2deg(p), where deg(p) is the degree of p, and maps the zero polynomial to zero, is a Dedekind–Hasse norm on F[X]. The first two conditions are satisfied simply by the definition of g, while the third condition can be proved using polynomial long division.

References

  • R. Sivaramakrishnan, Certain number-theoretic episodes in algebra, CRC Press, 2006.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Dedekind zeta function — In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function which is obtained by specializing to the case where K is the rational numbers Q. In particular,… …   Wikipedia

  • Integral domain — In abstract algebra, an integral domain is a commutative ring that has no zero divisors,[1] and which is not the trivial ring {0}. It is usually assumed that commutative rings and integral domains have a multiplicative identity even though this… …   Wikipedia

  • List of algebraic number theory topics — This is a list of algebraic number theory topics. Contents 1 Basic topics 2 Important problems 3 General aspects 4 Class field theory …   Wikipedia

  • Class formation — In mathematics, a class formation is a structure used to organize the various Galois groups and modules that appear in class field theory. They were invented by Emil Artin and John Tate. Contents 1 Definitions 2 Examples of class formations 3 The …   Wikipedia

  • Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… …   Wikipedia

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Scientific phenomena named after people — This is a list of scientific phenomena and concepts named after people (eponymous phenomena). For other lists of eponyms, see eponym. NOTOC A* Abderhalden ninhydrin reaction Emil Abderhalden * Abney effect, Abney s law of additivity William de… …   Wikipedia

  • P-adic number — In mathematics, the p adic number systems were first described by Kurt Hensel in 1897 [cite journal | last = Hensel | first = Kurt | title = Über eine neue Begründung der Theorie der algebraischen Zahlen | journal =… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”