de Sitter space

de Sitter space

In mathematics and physics, a de Sitter space is the analog in Minkowski space, or spacetime, of a sphere in ordinary, Euclidean space. The n-dimensional de Sitter space , denoted dSn, is the Lorentzian manifold analog of an n-sphere (with its canonical Riemannian metric); it is maximally symmetric, has constant positive curvature, and is simply-connected for n at least 3.

In the language of general relativity, de Sitter space is the maximally symmetric, vacuum solution of Einstein's field equations with a positive (repulsive) cosmological constant Λ (corresponding to a positive vacuum energy density and negative pressure). When n = 4 (3 space dimensions plus time), it is a cosmological model for the physical universe; see de Sitter universe.

De Sitter space was discovered by Willem de Sitter, and, at the same time, independently by Tullio Levi-Civita.

More recently it has been considered as the setting for special relativity rather than using Minkowski space and such a formulation is called de Sitter relativity.

Contents

Definition

De Sitter space can be defined as a submanifold of a Minkowski space of one higher dimension. Take Minkowski space R1,n with the standard metric:

ds^2 = -dx_0^2 + \sum_{i=1}^n dx_i^2.

De Sitter space is the submanifold described by the hyperboloid of one sheet

-x_0^2 + \sum_{i=1}^n x_i^2 = \alpha^2

where α is some positive constant with dimensions of length. The metric on de Sitter space is the metric induced from the ambient Minkowski metric. One can check that the induced metric is nondegenerate and has Lorentzian signature. (Note that if one replaces α2 with − α2 in the above definition, one obtains a hyperboloid of two sheets. The induced metric in this case is positive-definite, and each sheet is a copy of hyperbolic n-space.)

De Sitter space can also be defined as the quotient O(1,n)/O(1,n−1) of two indefinite orthogonal groups, which shows that it is a non-Riemannian symmetric space.

Topologically, de Sitter space is R × Sn−1 (so that that if n ≥ 3 then de Sitter space is simply-connected).

Properties

The isometry group of de Sitter space is the Lorentz group O(1,n). The metric therefore then has n(n+1)/2 independent Killing vectors and is maximally symmetric. Every maximally symmetric space has constant curvature. The Riemann curvature tensor of de Sitter is given by

R_{\rho\sigma\mu\nu} = {1\over \alpha^2}(g_{\rho\mu}g_{\sigma\nu} - g_{\rho\nu}g_{\sigma\mu})

De Sitter space is an Einstein manifold since the Ricci tensor is proportional to the metric:

R_{\mu\nu} = \frac{n-1}{\alpha^2}g_{\mu\nu}

This means de Sitter space is a vacuum solution of Einstein's equation with cosmological constant given by

\Lambda = \frac{(n-1)(n-2)}{2\alpha^2}.

The scalar curvature of de Sitter space is given by

R = \frac{n(n-1)}{\alpha^2} = \frac{2n}{n-2}\Lambda.

For the case n = 4, we have Λ = 3/α2 and R = 4Λ = 12/α2.

Static coordinates

We can introduce static coordinates (t, r, \ldots) for de Sitter as follows:

x_0 = \sqrt{\alpha^2-r^2}\sinh(t/\alpha)
x_1 = \sqrt{\alpha^2-r^2}\cosh(t/\alpha)
x_i = r z_i \qquad\qquad\qquad\qquad\qquad 2\le i\le n.

where zi gives the standard embedding the (n−2)-sphere in Rn−1. In these coordinates the de Sitter metric takes the form:

ds^2 = -\left(1-\frac{r^2}{\alpha^2}\right)dt^2 + \left(1-\frac{r^2}{\alpha^2}\right)^{-1}dr^2 + r^2 d\Omega_{n-2}^2.

Note that there is a cosmological horizon at r = α.

Flat slicing

Let

x0 = αsinh(t / α) + r2et / α / 2α,
x1 = αcosh(t / α) − r2et / α / 2α,
x_i = e^{t/\alpha}y_i, \qquad 2 \leq i \leq n

where r^2=\sum_i y_i^2. Then in the (t,yi) coordinates metric reads:

ds2 = − dt2 + e2t / αdy2

where dy^2=\sum_i dy_i^2 is the flat metric on yi's.

Open slicing

Let

x0 = αsinh(t / α)cosh ξ,
x1 = αcosh(t / α),
x_i = \alpha z_i \sinh(t/\alpha) \sinh\xi, \qquad 2 \leq i \leq n

where \sum_i z_i^2 = 1 forming a Sn − 2 with the standard metric \sum_i dz_i^2 = d\Omega_{n-2}^2. Then the metric of the de Sitter space reads

ds^2 = -dt^2 + \alpha^2 \sinh^2(t/\alpha) dH_{n-1}^2,

where

dH_{n-1}^2 = d\xi^2 + \sinh^2\xi d\Omega_{n-2}^2

is the metric of a Euclidean hyperbolic space.

Closed slicing

Let

x0 = αsinh(t / α),
x_i = \alpha \cosh(t/\alpha) z_i, \qquad 1 \leq i \leq n

where zis describe a Sn − 1. Then the metric reads:

ds^2 = -dt^2 + \alpha^2 \cosh^2(t/\alpha) d\Omega_{n-1}^2.

Changing the time variable to the conformal time via tan(η / 2) = tanh(t / 2α) (or equivalently cos η = 1 / cosh(t / α)) we obtain a metric conformally equivalent to Einstein static universe:

ds^2 = \frac{\alpha^2}{\cos^2\eta}(-d\eta^2 + d\Omega_{n-1}^2).

This serves to find the Penrose diagram of de Sitter space.

dS slicing

Let

x0 = αsin(χ / α)sinh(t / α)cosh ξ,
x1 = αcos(χ / α),
x2 = αsin(χ / α)cosh(t / α),
x_i = \alpha z_i \sin(\chi/\alpha) \sinh(t/\alpha) \sinh\xi, \qquad 3 \leq i \leq n

where zis describe a Sn − 3. Then the metric reads:

ds^2 = d\chi^2 + \sin^2(\chi/\alpha) ds_{dS,\alpha,n-1}^2,

where

ds_{dS,\alpha,n-1}^2 = -dt^2 + \alpha^2 \sinh^2(t/\alpha) dH_{n-2}^2

is the metric of an n − 1 dimensional de Sitter space with radius of curvature α in open slicing coordinates. The hyperbolic metric is given by:

dH_{n-2}^2 = d\xi^2 + \sinh^2\xi d\Omega_{n-3}^2.

This is the analytic continuation of the open slicing coordinates under (t,\xi,\theta,\phi_1,\phi_2,\cdots,\phi_{n-3}) \to (i\chi,\xi,it,\theta,\phi_1,\cdots,\phi_{n-4}) and also switching x0 and x2 because they change their timelike/spacelike nature.

See also

References

  • Qingming Cheng (2001), "De Sitter space", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/d/d110040.htm 
  • de Sitter, W. (1917), "On the relativity of inertia: Remarks concerning Einstein's latest hypothesis", Proc. Kon. Ned. Acad. Wet. 19: 1217–1225 
  • de Sitter, W. (1917), "On the curvature of space", Proc. Kon. Ned. Acad. Wet. 20: 229–243 
  • Nomizu, K. (1982), "The Lorentz-Poincaré metric on the upper half-space and its extension", Hokkaido Mathematical Journal 11 (3): 253–261 
  • Coxeter, H. S. M. (1943), "A geometrical background for de Sitter's world", American Mathematical Monthly (Mathematical Association of America) 50 (4): 217–228, doi:10.2307/2303924, JSTOR 2303924 
  • Susskind, L.; Lindesay, J. (2005), An Introduction to Black Holes, Information and the String Theory Revolution:The Holographic Universe, p. 119(11.5.25) 
  • Levi-Civita, Tullio (1917), "Realtà fisica di alcuni spazî normali del Bianchi", Rendiconti, Reale Accademia Dei Lincei 26: 519–31 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • De Sitter space — In mathematics and physics, n dimensional De Sitter space, denoted dS n, is the Lorentzian analog of an n sphere (with its canonical Riemannian metric). It is a maximally symmetric, Lorentzian manifold with constant positive curvature, and is… …   Wikipedia

  • Anti de Sitter space — In mathematics and physics, n dimensional anti de Sitter space, sometimes written AdS n, is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. It is the Lorentzian analog of n dimensional hyperbolic space, just as… …   Wikipedia

  • Sitter, Willem de — ▪ Dutch mathematician and astronomer born May 6, 1872, Sneek, Neth. died Nov. 20, 1934, Leiden       Dutch mathematician, astronomer, and cosmologist who developed theoretical models of the universe based on Albert Einstein s general theory of… …   Universalium

  • de Sitter invariant special relativity — In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the Indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of General… …   Wikipedia

  • de Sitter–Schwarzschild metric — In general relativity, the de Sitter–Schwarzschild solution describes a black hole in a causal patch of de Sitter space. Unlike a flat space black hole, there is a largest possible de Sitter black hole, which is the Nariai spacetime. The Nariai… …   Wikipedia

  • de Sitter universe — Physical cosmology Universe · Big Bang …   Wikipedia

  • De Sitter universe — A de Sitter universe is a solution to Einstein s field equations of General Relativity which is named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominated by… …   Wikipedia

  • Willem de Sitter — de Sitter redirects here. For other uses, see Sitter (disambiguation). Willem de Sitter Born 6 May 1872(1872 05 06 …   Wikipedia

  • De-Sitter-Raum — Der De Sitter Raum oder De Sitter Kosmos ist eine Raumzeit mit positiver Kosmologischer Konstante und verschwindendem Materieinhalt. Er wurde 1917 von dem niederländischen Astronom Willem de Sitter entwickelt.[1] Damals wurde es als stationäres… …   Deutsch Wikipedia

  • Anti-de-Sitter-Raum — Der Anti De Sitter Raum ist eine Raumzeit mit negativer Kosmologischer Konstante. Seine Energieform ist im Gegensatz zur Dunklen Energie im De Sitter Raum anziehend. Die Namensgebung erfolgte als Gegenstück zum De Sitter Raum, benannt nach dem… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”