Classful network

Classful network

A classful network is a network addressing architecture used in the Internet from 1981 until the introduction of Classless Inter-Domain Routing in 1993. The method divides the address space for Internet Protocol Version 4 (IPv4) into five address classes. Each class, coded in the first four bits of the address, defines either a different network size, i.e. number of hosts for unicast addresses (classes A, B, C), or a multicast network (class D). The fifth class (E) address range is reserved for future or experimental purposes.

Since its discontinuation, remnants of classful network concepts remain in practice only in limited scope in the default configuration parameters of some network software and hardware components (e.g., default subnet mask), but the terms are often still used in general discussions of network structure among network administrators.

Map of the prototype Internet in 1982, showing 8-bit-numbered networks (ovals) only, interconnected by routers (rectangles).

Contents

Background

Originally, a 32-bit IPv4 address was logically subdivided into the network number field, the most-significant 8 bits of an address, which specified the particular network a host was attached to, and the local address, also called rest field (the rest of the address), which uniquely identifies a host connected to that network. This format was sufficient at a time when only a few large networks existed, such as the ARPANET which was assigned the network number 10, and before the wide proliferation of local area networks (LANs). As a consequence of this architecture, the address space supported only a low number (254) of independent networks, and it became clear very early on that this would not be enough.

Introduction of address classes

Expansion of the network had to ensure compatibility with the existing address space and the Internet Protocol (IP) packet structure, and avoid the renumbering of the existing networks. The solution was to expand the definition of the network number field to include more bits, allowing more networks to be designated, each potentially having fewer hosts. All existing network numbers at the time were smaller than 64, they only used the 6 least-significant bits of the network number field. Thus it was possible to use the most-significant bits of an address to introduce a set of address classes, while preserving the existing network numbers in the first of these classes.

The new addressing architecture was introduced by RFC 791 in 1981 as a part of the specification of the Internet Protocol.[1] It divided the address space into primarily three address formats, henceforth called address classes, and left a fourth range reserved to be defined later.

The first class, designated as Class A, contained all addresses in which the most significant bit is zero. The network number for this class is given by the next 7 bits, therefore accommodating 128 networks in total, including the zero network, and including the existing IP networks already allocated. A Class B network was a network in which all addresses had the two most-significant bits set to 1 and 0. For these networks, the network address was given by the next 14 bits of the address, thus leaving 16 bits for numbering host on the network for a total of 65536 addresses per network. Class C was defined with the 3 high-order bits set to 1, 1, and 0, and designating the next 21 bits to number the networks, leaving each network with 256 local addresses.

The leading bit sequence 111 designated an "escape to extended addressing mode",[1] which was later subdivided in to Class D (1110) for multicast addressing, while leaving as reserved for future use the 1111 block designated as Class E.

This addressing scheme is illustrated in the following table:

Class Leading
bits
Size of network
number
bit field
Size of rest
bit field
Number
of networks
Addresses
per network
Start address End address
Class A     0     8     24     128 (27)     16,777,216 (224) 0.0.0.0 127.255.255.255
Class B     10     16     16     16,384 (214)     65,536 (216) 128.0.0.0 191.255.255.255
Class C     110     24     8     2,097,152 (221)     256 (28) 192.0.0.0 223.255.255.255
Class D (multicast)     1110     not defined     not defined     not defined     not defined 224.0.0.0 239.255.255.255
Class E (reserved)     1111     not defined     not defined     not defined     not defined 240.0.0.0 255.255.255.255

The number of addresses usable for addressing specific hosts in each network is always 2N - 2 (where N is the number of rest field bits, and the subtraction of 2 adjusts for the use of the all-bits-zero host portion for network address and the all-bits-one host portion as a broadcast address. Thus, for a Class C address with 8 bits available in the host field, the number of hosts is 254.

Today, IP addresses are associated with a subnet mask. This was not required in a classful network because the mask was implicitly derived from the IP address itself. Any network device would inspect the first few bits of the IP address to determine the class of the address.

Bit-wise representation

In the following table:

  • n indicates a binary slot used for network ID.
  • H indicates a binary slot used for host ID.
  • X indicates a binary slot (without specified purpose)
Class A
  0.  0.  0.  0 = 00000000.00000000.00000000.00000000
127.255.255.255 = 01111111.11111111.11111111.11111111
                  0nnnnnnn.HHHHHHHH.HHHHHHHH.HHHHHHHH

Class B
128.  0.  0.  0 = 10000000.00000000.00000000.00000000
191.255.255.255 = 10111111.11111111.11111111.11111111
                  10nnnnnn.nnnnnnnn.HHHHHHHH.HHHHHHHH

Class C
192.  0.  0.  0 = 11000000.00000000.00000000.00000000
223.255.255.255 = 11011111.11111111.11111111.11111111
                  110nnnnn.nnnnnnnn.nnnnnnnn.HHHHHHHH

Class D
224.  0.  0.  0 = 11100000.00000000.00000000.00000000
239.255.255.255 = 11101111.11111111.11111111.11111111
                  1110XXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX

Class E
240.  0.  0.  0 = 11110000.00000000.00000000.00000000
255.255.255.255 = 11111111.11111111.11111111.11111111
                  1111XXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX

The replacement of classes

The first architecture change extended the addressing capability in the Internet, but did not prevent IP address shortage. The problem was that many sites needed larger address blocks than a Class C network provided, and therefore they received a Class B block, which was in most cases much larger than required. In the rapid growth of the Internet, the pool of unassigned Class B addresses (214, or about 16,000) was rapidly being depleted. Classful networking was replaced by Classless Inter-Domain Routing (CIDR), starting in 1993 with the specification of RFC 1518 and RFC 1519, to attempt to solve this problem.

Early allocations of IP addresses by the Internet Assigned Numbers Authority (IANA) were in some cases not made efficiently, which contributed to the problem. However, the commonly held notion that some American organizations unfairly or unnecessarily received Class A networks is wrong; most such allocations date to the period before the introduction of address classes, when the only address blocks available were what later became known as Class A networks.[2]

See also

References

  1. ^ a b RFC 791, Internet Protocol, Information Sciences Institute (September 1981)
  2. ^ IEN46, A proposal for addressing and routing in the Internet, David D. Clark, June 1978

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Network address — may refer to: Base address Classful address IP address IPX address Logical address Network layer address, X.25/X.21 address MAC address See also Autonomous system (Internet) Host address Link layer Subnet mask …   Wikipedia

  • Private network — In the Internet addressing architecture, a private network is a network that uses private IP address space, following the standards set by RFC 1918 and RFC 4193. These addresses are commonly used for home, office, and enterprise local area… …   Wikipedia

  • IP address — For the Wikipedia user access level, see Wikipedia:User access levels#Unregistered users. An Internet Protocol address (IP address) is a numerical label assigned to each device (e.g., computer, printer) participating in a computer network that… …   Wikipedia

  • Classless Inter-Domain Routing — CIDR redirects here. For other uses, see CIDR (disambiguation). Classless Inter Domain Routing (CIDR) is a method for allocating IP addresses and routing Internet Protocol packets. The Internet Engineering Task Force introduced CIDR in 1993 to… …   Wikipedia

  • IPv4 — Internet Protocol version 4 (IPv4) is the fourth revision in the development of the Internet Protocol (IP) and it is the first version of the protocol to be widely deployed. Together with IPv6, it is at the core of standards based internetworking …   Wikipedia

  • Agotamiento de las direcciones IPv4 — El crecimiento exponencial de Internet está llevando hacia el agotamiento de las direcciones IPv4, es decir a la progresiva merma de la cantidad de direcciones IPv4 disponibles. Este tema ha sido una preocupación desde los años 80. Como… …   Wikipedia Español

  • IPv4 address exhaustion — IP address exhaustion refers to the decreasing supply of unallocated IPv4 addresses. This depletion has been a concern since the 1980s when the Internet started to experience dramatic growth. As a result, this has been the driving factor in… …   Wikipedia

  • Multicast address — A multicast address is a logical identifier for a group of hosts in a computer network, that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the Link… …   Wikipedia

  • Dirección IP — Este artículo trata sobre el número de identificación de red. Para otros usos de este término, véase IP. Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a un interfaz (elemento de comunicación/conexión) de …   Wikipedia Español

  • Class B — The term Class B may refer to: Class B amplifier, an electronic amplifier category Class B stars Class B (baseball), a defunct class in minor league baseball in North America Class B airspace class, as defined by the ICAO for the busiest U.S.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”