Cyclic number (group theory)
- Cyclic number (group theory)
-
A cyclic number[1] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic iff any group of order n is cyclic.
Any prime number is clearly cyclic. All cyclic numbers are square-free.[2] Let n = p1 p2 … pk where the pi are distinct primes, then φ(n) = (p1 - 1)(p2 - 1)…(pk - 1). If no pi divides any (pj - 1), then n and φ(n) have no common (prime) divisor, and n is cyclic.
The first cyclic numbers are 1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, … (sequence A003277 in OEIS).
References
Wikimedia Foundation.
2010.
Look at other dictionaries:
Cyclic number — This article is about numbers where permutations of their digits (in some base) yield related numbers. For the number theoretic concept, see cyclic number (group theory). A summary of this article appears in Repeating decimal. A cyclic number is… … Wikipedia
Glossary of group theory — A group ( G , •) is a set G closed under a binary operation • satisfying the following 3 axioms:* Associativity : For all a , b and c in G , ( a • b ) • c = a • ( b • c ). * Identity element : There exists an e ∈ G such that for all a in G , e •… … Wikipedia
List of group theory topics — Contents 1 Structures and operations 2 Basic properties of groups 2.1 Group homomorphisms 3 Basic types of groups … Wikipedia
Elementary group theory — In mathematics, a group is defined as a set G and a binary operation on G , called product and denoted by infix * . Product obeys the following rules (also called axioms). Let a , b , and c be arbitrary elements of G . Then: *A1, Closure. a * b… … Wikipedia
Geometric group theory — is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the… … Wikipedia
Cauchy's theorem (group theory) — Cauchy s theorem is a theorem in the mathematics of group theory, named after Augustin Louis Cauchy. It states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G ), then G contains an element… … Wikipedia
Word (group theory) — In group theory, a word is any written product of group elements and their inverses. For example, if x , y , and z are elements of a group G , then xy , z 1 xzz , and y 1 zxx 1 yz 1 are words in the set { x , y , z }. Words play an important role … Wikipedia
Lagrange's theorem (group theory) — Lagrange s theorem, in the mathematics of group theory, states that for any finite group G , the order (number of elements) of every subgroup H of G divides the order of G . Lagrange s theorem is named after Joseph Lagrange. Proof of Lagrange s… … Wikipedia
Order (group theory) — This article is about order in group theory. For order in other branches of mathematics, see Order (mathematics). For order in other disciplines, see Order. In group theory, a branch of mathematics, the term order is used in two closely related… … Wikipedia
Cyclic group — Group theory Group theory … Wikipedia