Unipotent representation

Unipotent representation

In mathematics, a unipotent representation of a reductive group is a representation that has some similarities with unipotent conjugacy classes of groups.

Informally, Langlands philosophy suggests that there should be a correspondence between representations of a reductive group and conjugacy classes a Langlands dual group, and the unipotent representations should be roughly the ones corresponding to unipotent classes in the dual group.

Unipotent representations are supposed to be the basic "building blocks" out of which one can construct all other representations in the following sense. Unipotent representations should form a small (preferably finite) set of irreducible representations for each reductive group, such that all irreducible representations can be obtained from unipotent representations of possibly smaller groups by some sort of systematic process, such as (cohomological or parabolic) induction.

Contents

Finite fields

Over finite fields, the unipotent representations are those that occur in the decomposition of the Deligne–Lusztig characters R1
T
of the trivial representation 1 of a torus T . They were classified by Lusztig (1978, 1979). Some examples of unipotent representations over finite fields are the trivial 1-dimensional representation, the Steinberg representation, and θ10.

Non-archimedean local fields

Lusztig (1995) classified the unipotent characters over non-archimedean local fields.

Archimedean local fields

Vogan (1987) discusses several different possible definitions of unipotent representations of real Lie groups.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Steinberg representation — In mathematics, the Steinberg representation, or Steinberg module, denoted by St , is a particular linear representation of a group of Lie type over a finite field of characteristic p , of degree equal to the largest power of p dividing the order …   Wikipedia

  • Cuspidal representation — In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in L2 spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the… …   Wikipedia

  • Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… …   Wikipedia

  • Springer correspondence — In mathematics, the Springer representations are certain representations of the Weyl group W associated to unipotent conjugacy classes of a semisimple algebraic group G . There is another parameter involved, a representation of a certain finite… …   Wikipedia

  • Reductive group — In mathematics, a reductive group is an algebraic group G such that the unipotent radical of the identity component of G is trivial. Any semisimple algebraic group and any algebraic torus is reductive, as is any general linear group.The name… …   Wikipedia

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • Jordan–Chevalley decomposition — In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley (also known as Dunford decomposition, named after Nelson Dunford, as well as SN decomposition), expresses a linear operator as the sum of its… …   Wikipedia

  • Kazhdan–Lusztig polynomial — In representation theory, a Kazhdan–Lusztig polynomial P y,w ( q ) is a member of a family of integral polynomials introduced in work of David Kazhdan and George Lusztig Harv|Kazhdan|Lusztig|1979. They are indexed by pairs of elements y , w of a… …   Wikipedia

  • Haboush's theorem — In mathematics Haboush s theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K , and for any linear representation ρ of G on a K vector space V , given v ne;0 in V that is… …   Wikipedia

  • Borel–Bott–Weil theorem — In mathematics, the Borel–Bott–Weil theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”