Fourier division

Fourier division

Fourier division or cross division is a pencil-and-paper method of division which helps to simplify the process when the divisor has more than two digits. It was invented by Joseph Fourier.

Contents

Method

The following exposition assumes that the numbers are broken into two-digit pieces, separated by commas: e.g. 3456 becomes 34,56. In general x,y denotes x·100 + y and x,y,z denotes x·10000 + y·100 + z, etc.

Suppose that we wish to divide c by a, to obtain the result b. (So a × b = c.)

\frac{c}{a}=\frac{c_1,c_2,c_3,c_4,c_5\dots}{a_1,a_2,a_3,a_4,a_5\dots}=b_1,b_2,b_3,b_4,b_5\dots = b

Note that a1 may not have a leading zero; it should stand alone as a two-digit number.

We can find the successive terms b1, b2, etc., using the following formulae:

b_1=\frac{c_1,c_2}{a_1}\mbox{ with remainder }r_1
b_2=\frac{r_1,c_3 - b_1\times a_2}{a_1}\mbox{ with remainder }r_2
b_3=\frac{r_2,c_4 - b_2\times a_2 - b_1\times a_3}{a_1}\mbox{ with remainder }r_3
b_4=\frac{r_3,c_5 - b_3\times a_2 - b_2\times a_3 - b_1\times a_4}{a_1}\mbox{ with remainder }r_4 \dots

Each time we add a term to the numerator until it has as many terms as a. From then on, the number of terms remains constant, so there is no increase in difficulty. Once we have as much precision as we need, we use an estimate to place the decimal point.

It will often be the case that one of the b terms will be negative. For example, 93,−12 denotes 9288, while −16,32 denotes −1600 + 32 or −1568. (Note: 45,−16,32 denotes 448432.) Care must be taken with the signs of the remainders also.

The general term is

b_i=\frac{r_{i-1},c_{i+1} - \textstyle \sum_{j=2}^i b_{i-j+1}\times a_j}{a_1}\mbox{ with remainder }r_i

Partial quotients with more than two digits

In cases where one or more of the b terms has more than two digits, the final quotient value b cannot be constructed simply by concatenating the digit pairs. Instead, each term, starting with b1, should be multiplied by 100, and the next term added (or, if negative, subtracted). This result should be multiplied by 100, and the next term added or subtracted, etc., until all terms are exhausted. In other words, we construct partial sums of the b terms:

B1 = b1
Bi = 100bi 1 + bi

The last partial sum is the value for b.

Example

Find the reciprocal of π3.14159.

\frac{1}{\pi}=\frac{10,00,00\dots}{31,41,59\dots}=b_1,b_2,b_3\dots = b
b_1=\frac{10,00}{31}=32\mbox{ with remainder }8
b_2=\frac{8,00 - 32\times 41}{31}=\frac{-512}{31}=-17\mbox{ with remainder }15
b_3=\frac{15,00 + 17\times 41 - 32\times 59}{31}=\frac{309}{31}=10\mbox{ with remainder }-1.

The result is 32,-17,10 or 31,83,10 yielding 0.318310.

Bibliography

  • Ronald W Doerfler. Dead Reckoning: Calculating without Instruments. Gulf Publishing, 1993.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Fourier, Charles — (1772 1837)    philosopher, economist    The son of a wealthy merchant, Charles Fourier was born in Besançon, where he also studied at the university. In 1799, he began to write on politics and economics, and his first large work, Théorie des… …   France. A reference guide from Renaissance to the Present

  • Discrete Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms In mathematics, the discrete Fourier transform (DFT) is a specific kind of discrete transform, used in… …   Wikipedia

  • Orthogonal frequency-division multiplexing — Passband modulation v · d · e Analog modulation AM · …   Wikipedia

  • Fast Fourier Transform — Transformée de Fourier rapide La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors… …   Wikipédia en Français

  • Transformee de Fourier rapide — Transformée de Fourier rapide La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors… …   Wikipédia en Français

  • Transformée de Fourier rapide — La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors que la complexité du calcul de …   Wikipédia en Français

  • Transformée de fourier rapide — La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors que la complexité du calcul de …   Wikipédia en Français

  • Transformée rapide de Fourier — Transformée de Fourier rapide La transformée de Fourier rapide (sigle anglais : FFT ou Fast Fourier Transform) est un algorithme de calcul de la transformée de Fourier discrète (TFD). Sa complexité varie en avec le nombre de points n, alors… …   Wikipédia en Français

  • Fast Fourier transform — A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse. There are many distinct FFT algorithms involving a wide range of mathematics, from simple complex number arithmetic to group …   Wikipedia

  • Joseph Fourier — Pour les articles homonymes, voir Fourier. Joseph Fourier Joseph Fourier. Gravure de Julien Léopold Boilly Naissance …   Wikipédia en Français

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/11590559 Do a right-click on the link above
and select “Copy Link”