Whitney topologies

Whitney topologies

In mathematics, and especially differential topology, functional analysis and singularity theory, the Whitney topologies are a countably infinite family of topologies defined on the set of smooth mappings between two smooth manifolds. They are named after the American mathematician Hassler Whitney.

Contents

Construction

Let M and N be two real, smooth manifolds. Furthermore, let C(M,N) denote the space of smooth mappings between M and N. The notation C means that the mappings are infinitely differentiable, i.e. partial derivatives of all orders exist and are continuous.[1]

Whitney Ck-topology

For some integer k ≥ 0, let Jk(M,N) denote the k-jet space of mappings between M and N. The jet space can be endowed with a smooth structure (i.e. a structure as a C manifold) which make it into a topological space. This topology is used to define a topology on C(M,N).

For a fixed integer k ≥ 0 consider an open subset U ⊂ Jk(M,N), and denote by Sk(U) the following:

 S^k(U) = \{ f \in C^{\infty}(M,N) : (j^kf)(M) \subseteq U \} .

The sets Sk(U) form a basis for the Whitney Ck-topology on C(M,N).[2]

Whitney C-topology

For each choice of k ≥ 0, the Whitney Ck-topology gives a topology for C(M,N); in other words the Whitney Ck-topology tells us which subsets of C(M,N) are open sets. Let us denote by Wk the set of open subsets of C(M,N) with respect to the Whitney Ck-topology. Then the Whitney C-topology is defined to be the topology whose basis is given by W, where:[2]

 W = \bigcup_{k=0}^{\infty} W^k .

Dimensionality

Notice that C(M,N) has infinite dimension, whereas Jk(M,N) has finite dimension. In fact, Jk(M,N) is a real, finite dimensional manifold. To see this, let k[x1,…,xm] denote the space of polynomials, with real coefficients, in m variables and of order at most k. This is a real vector space with dimension

 \dim\left\{\R^k[x_1,\ldots,x_m]\right\} = \sum_{i=1}^k \frac{(m+i-1)!}{(m-1)! \cdot i!} = \left( \frac{(m+k)!}{m!\cdot k!} - 1 \right) .

Writing a = dim{ℝk[x1,…,xm]} then, by the standard theory of vector spaces k[x1,…,xm] ≅ ℝa, and so is a real, finite dimensional manifold. Next, define:

B_{m,n}^k = \bigoplus_{i=1}^n \R^k[x_1,\ldots,x_m], \implies \dim\left\{B_{m,n}^k\right\} = n \dim \left\{ A_m^k \right\} = n \left( \frac{(m+k)!}{m!\cdot k!} - 1 \right) .

Using b to denote the dimension Bkm,n, we see that Bkm,n ≅ ℝb, and so is a real, finite dimensional manifold.

In fact, if M and N have dimension m and n respectively then:[3]

 \dim\!\left\{J^k(M,N)\right\} = m + n + \dim \!\left\{B_{n,m}^k\right\} = m + n\left( \frac{(m+k)!}{m!\cdot k!}\right).

Topology

Consider the surjective mapping from the space of smooth maps between smooth manifolds and the k-jet space:

\pi^k : C^{\infty}(M,N) \twoheadrightarrow J^k(M,N) \ \mbox{where} \ \pi^k(f) = (j^kf)(M) .

In the Whitney Ck-topology the open sets in C(M,N) are, by definition, the preimages of open sets in Jk(M,N). It follows that the map πk between C(M,N) given the Whitney Ck-topology and Jk(M,N) given the Euclidean topology is continuous.

Given the Whitney C-topology, the space C(M,N) is a Baire space, i.e. every residual set is dense.[4]

References

  1. ^ Golubitsky, M.; Guillemin, V. (1974), Stable Mappings and Their Singularities, Springer, p. 1, ISBN 0387900721 
  2. ^ a b Golubitsky, M.; Guillemin, V. (1974), Stable Mappings and Their Singularities, Springer, p. 42, ISBN 0387900721 
  3. ^ Golubitsky, M.; Guillemin, V. (1974), Stable Mappings and Their Singularities, Springer, p. 40, ISBN 0387900721 
  4. ^ Golubitsky, M.; Guillemin, V. (1974), Stable Mappings and Their Singularities, Springer, p. 44, ISBN 0387900721 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Matroid — In combinatorics, a branch of mathematics, a matroid (  /ˈmeɪ …   Wikipedia

  • Topology — (Greek topos , place, and logos , study ) is the branch of mathematics that studies the properties of a space that are preserved under continuous deformations. Topology grew out of geometry, but unlike geometry, topology is not concerned with… …   Wikipedia

  • G. H. Hovagimyan — is an experimental cross media, new media and performance artist who lives and works in New York City. He was born 1950 in Plymouth, Massachusetts. In 1972, He received a B.F.A. from the University of the Arts in Philadelphia, Pennsylvania and… …   Wikipedia

  • Catégorie des variétés différentielles — Variété (géométrie) Pour les articles homonymes, voir Variété. Réalisation du ruban de Möbius, à partir du collage d une bande de papier. Le bord n est que d …   Wikipédia en Français

  • Variété (géométrie) — Pour les articles homonymes, voir Variété. Réalisation du ruban de Möbius à partir du collage d une bande de papier. Le « bord » n est que d un seul tenant. En math …   Wikipédia en Français

  • Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… …   Wikipedia

  • Fine — may be: * An adjective meaning attractive, sexy, physically attractive, beautiful etc.Legal* Fine (penalty), financial punishment * Fine of lands, an obsolete type of land conveyance * Fine on alienation, money paid to the lord by a tenant when… …   Wikipedia

  • Éléments d'analyse — Les Éléments d analyse sont une série de 9 volumes écrits par le mathématicien français Jean Dieudonné. À l origine, seul le premier volume, Foundations of Modern Analysis, publié en 1960, était prévu. J. Dieudonné l écrit suite à une série de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”