Continuous Hahn polynomials
- Continuous Hahn polynomials
-
In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.
Orthogonality
Recurrence and difference relations
Rodrigues formula
Generating function
Relation to other polynomials
References
- Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR0030647
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248, http://dlmf.nist.gov/18.19
Wikimedia Foundation.
2010.
Look at other dictionaries:
Continuous dual Hahn polynomials — In mathematics, the continuous dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by Roelof Koekoek, Peter A … Wikipedia
Dual Hahn polynomials — In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by for 0≤n≤N where λ(x)=x(x+γ+δ+1).… … Wikipedia
Continuous dual q-Hahn polynomials — In mathematics, the continuous dual q Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… … Wikipedia
Continuous q-Hahn polynomials — In mathematics, the continuous q Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… … Wikipedia
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Formal power series — In mathematics, formal power series are devices that make it possible to employ much of the analytical machinery of power series in settings that do not have natural notions of convergence. They are also useful, especially in combinatorics, for… … Wikipedia