- Commutant-associative algebra
-
In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom:
- ([A1,A2],[A3,A4],[A5,A6]) = 0,
where [A, B] = AB − BA is the commutator of A and B and (A, B, C) = (AB)C – A(BC) is the associator of A, B and C.
In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra.
See also
- Valya algebra
- Malcev algebra
- Alternative algebra
References
- A. Elduque, H. C. Myung Mutations of alternative algebras, Kluwer Academic Publishers, Boston, 1994, ISBN 0-7923-2735-7
- V.T. Filippov (2001), "Mal'tsev algebra", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/M/m062170.htm
- M.V. Karasev, V.P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization. American Mathematical Society, Providence, 1993.
- A.G. Kurosh, Lectures on general algebra. Translated from the Russian edition (Moscow, 1960) by K. A. Hirsch. Chelsea, New York, 1963. 335 pp. ISBN 0828401683 ISBN 9780828401685
- A.G. Kurosh, General algebra. Lectures for the academic year 1969/70. Nauka, Moscow,1974. (In Russian)
- A.I. Mal'tsev, Algebraic systems. Springer, 1973. (Translated from Russian)
- A.I. Mal'tsev, Analytic loops. Mat. Sb., 36 : 3 (1955) pp. 569–576 (In Russian)
- Schafer, R.D. (1995). An Introduction to Nonassociative Algebras. New York: Dover Publications. ISBN 0-486-68813-5.
- V.E. Tarasov, "Quantum dissipative systems: IV. Analogues of Lie algebras and groups" Theoretical and Mathematical Physics. Vol.110. No.2. (1997) pp.168-178.
- V.E. Tarasov Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier Science, Amsterdam, Boston, London, New York, 2008. ISBN 0444530916 ISBN 9780444530912
- Zhevlakov, K.A. (2001), "Alternative rings and algebras", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/A/a012090.htm
Categories:- Nonassociative algebras
Wikimedia Foundation. 2010.