- Circle packing in a circle
-
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.
Minimum solutions:[1]
Number of
unit circlesEnclosing
circle radiusDensity Optimality Diagram 1 1 1.0000 Trivially optimal. 2 2 0.5000 Trivially optimal. 3
≈ 2.154...0.6466... Trivially optimal. 4
≈ 2.414...0.6864... Trivially optimal. 5
≈ 2.701...0.6854... Proved optimal
by Graham in 1968.[2]6 3 0.6667... Proved optimal
by Graham in 1968.[2]7 3 0.7778... Proved optimal
by Graham in 1968.[2]8
≈ 3.304...0.7328... Proved optimal
by Pirl in 1969.[3]9
≈ 3.613...0.6895... Proved optimal
by Pirl in 1969.[3]10 3.813... 0.6878... Proved optimal
by Pirl in 1969.[3]11
≈ 3.923...0.7148... Proved optimal
by Melissen in 1994.[4]12 4.029... 0.7392... Proved optimal
by Fodor in 2000.[5]13
≈4.236...0.7245... Proved optimal
by Fodor in 2003.[6]14 4.328... 0.7474... Conjectured optimal.[7] 15 4.521... 0.7339... Conjectured optimal.[7] 16 4.615... 0.7512... Conjectured optimal.[7] 17 4.792... 0.7403... Conjectured optimal.[7] 18
≈ 4.863...0.7611... Conjectured optimal.[7] 19
≈ 4.863...0.8034... Proved optimal
by Fodor in 1999.[8]20 5.122... 0.7623... Conjectured optimal.[7] References
- ^ Erich Friedman, Circles in Circles on Erich's Packing Center
- ^ a b c R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
- ^ a b c U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Math. Nachr. 40 (1969) 111-124.
- ^ H. Melissen, Densest packing of eleven congruent circles in a circle, Geom. Dedicata 50 (1994) 15-25.
- ^ F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
- ^ F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
- ^ a b c d e f Graham RL, Lubachevsky BD, Nurmela KJ,Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
- ^ F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.
This geometry-related article is a stub. You can help Wikipedia by expanding it.