Circle packing in a circle

Circle packing in a circle

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.

Minimum solutions:[1]

Number of
unit circles
Enclosing
circle radius
Density Optimality Diagram
1 1 1.0000 Trivially optimal.
2 2 0.5000 Trivially optimal. Disk pack2.svg
3 1+\frac{2}{3} \sqrt{3}
≈ 2.154...
0.6466... Trivially optimal. Disk pack3.svg
4 1+\sqrt{2}
≈ 2.414...
0.6864... Trivially optimal. Disk pack4.svg
5 1+\sqrt{2(1+\frac{1}{\sqrt{5}})}
≈ 2.701...
0.6854... Proved optimal
by Graham in 1968.[2]
Disk pack5.svg
6 3 0.6667... Proved optimal
by Graham in 1968.[2]
Disk pack6.svg
7 3 0.7778... Proved optimal
by Graham in 1968.[2]
Disk pack7.svg
8 1+\frac{1}{\sin(\frac{\pi}{7})}
≈ 3.304...
0.7328... Proved optimal
by Pirl in 1969.[3]
Disk pack8.svg
9 1+\sqrt{2(2+\sqrt{2})}
≈ 3.613...
0.6895... Proved optimal
by Pirl in 1969.[3]
Disk pack9.svg
10 3.813... 0.6878... Proved optimal
by Pirl in 1969.[3]
Disk pack10.svg
11 1+\frac{1}{\sin(\frac{\pi}{9})}
≈ 3.923...
0.7148... Proved optimal
by Melissen in 1994.[4]
Disk pack11.svg
12 4.029... 0.7392... Proved optimal
by Fodor in 2000.[5]
13 2 + \sqrt{5}
≈4.236...
0.7245... Proved optimal
by Fodor in 2003.[6]
14 4.328... 0.7474... Conjectured optimal.[7]
15 4.521... 0.7339... Conjectured optimal.[7]
16 4.615... 0.7512... Conjectured optimal.[7]
17 4.792... 0.7403... Conjectured optimal.[7]
18 1+\sqrt{2}+\sqrt{6}
≈ 4.863...
0.7611... Conjectured optimal.[7]
19 1+\sqrt{2}+\sqrt{6}
≈ 4.863...
0.8034... Proved optimal
by Fodor in 1999.[8]
20 5.122... 0.7623... Conjectured optimal.[7]

References

  1. ^ Erich Friedman, Circles in Circles on Erich's Packing Center
  2. ^ a b c R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
  3. ^ a b c U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Math. Nachr. 40 (1969) 111-124.
  4. ^ H. Melissen, Densest packing of eleven congruent circles in a circle, Geom. Dedicata 50 (1994) 15-25.
  5. ^ F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
  6. ^ F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
  7. ^ a b c d e f Graham RL, Lubachevsky BD, Nurmela KJ,Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
  8. ^ F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.