Electrovacuum solution

Electrovacuum solution

In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass-energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) "source-free" Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein-Maxwell solutions.

Mathematical definition

In general relativity, the geometric setting for physical phenomena is a Lorentzian manifold, which is physically interpreted as a curved spacetime, and which is mathematically specified by defining a metric tensor , g_{ab} (or by defining a frame field). The curvature tensor , R_{abcd}of this manifold and associated quantities such as the Einstein tensor G^{ab}, are well-defined even in the absence of any physical theory, but in general relativity they acquire a physical interpretation as geometric manifestations of the gravitational field.

We also need to specify an electromagnetic field by defining an electromagnetic field tensor F_{ab} on our Lorentzian manifold. These two tensors are required to satisfy two following conditions
# The electromagnetic field tensor must satisfy the "source-free" curved spacetime Maxwell field equations , F_{ab;c} + F_{bc;a} + F_{ca;b} = 0 and {F^{jb_{;j} = 0
# The Einstein tensor must match the electromagnetic stress-energy tensor, G^{ab}= 2 , left( F^{a}{}_{j}F^{jb}-frac{1}{4}g^{ab} , F^{mn} , F_{mn} ight ).

The first Maxwell equation is satisfied automatically if we define the field tensor in terms of an electromagnetic potential vector vec{A}. In terms of the dual covector (or potential one-form) and the electromagnetic two-form, we can do this by setting F = dA. Then we need only ensure that the divergences vanishes (i.e. that the second Maxwell equation is satisfied for a "source-free" field) and that the electromagnetic stress-energy matches the Einstein tensor.

Invariants

As in flat spacetime, the electromagnetic field tensor is antisymmetric, with only two algebraically independent scalar invariants,: I = star ( F wedge star F ) = F_{ab} , F^{ab} = -2 , left ( | vec{E} |^2 - |vec{B} |^2 ight) : J = star (F wedge F) = F_{ab} , {star F}^{ab} = -4 , vec{E} cdot vec{B}

Using these, we can classify the possible electromagnetic fields as follows:
# If I < 0 but J = 0, we have an electrostatic field, which means that "some" observers will measure a static electric field, and no magnetic field.
# If I > 0 but J = 0, we have an magnetostatic field, which means that "some" observers will measure a static magnetic field, and no electric field.
# If I = J = 0, the electromagnetic field is said to be null, and we have a null electrovacuum.Null electrovacuums are associated with electromagnetic radiation. An electromagnetic field which is not null is called non-null, and then we have a non-null electrovacuum.

Einstein tensor

The components of a tensor computed with respect to a frame field rather than the "coordinate basis" are often called "physical components", because these are the components which can (in principle) be measured by an observer.

In the case of an electrovacuum solution, an "adapted" frame: vec{e}_0, ; vec{e}_1, ; vec{e}_2, ; vec{e}_3 can always be found in which the Einstein tensor has a particularly simple appearance.Here, the first vector is understood to be a "timelike" unit vector field; this is everywhere tangent to the world lines of the corresponding family of "adapted observers", whose motion is "aligned" with the electromagnetic field. The last three are "spacelike" unit vector fields.

For a "non-null" electrovacuum, an adapted frame can be found in which the Einstein tensor takes the form: G^{hat{a}hat{b = 8 pi epsilon , left [ egin{matrix} 1&0&0&0\0&1&0&0\0&0&1&0\0&0&0&-1end{matrix} ight] where epsilon is the energy density of the electromagnetic field, as measured by any adapted observer. From this expression, it is easy to see that the isotropy group of our non-null electrovacuum is generated by boosts in the vec{e}_3 direction and rotations about the vec{e}_3 axis. In other words, the isotropy group of any non-null electrovacuum is a two dimensional abelian Lie group isomorphic to SO(1,1) x SO(2).

For a "null" electrovacuum, an adapted frame can be found in which the Einstein tensor takes the form: G^{hat{a}hat{b = 8 pi epsilon , left [ egin{matrix} 1&0&0&pm 1\ 0&0&0&0\0&0&0&0\ pm 1 &0&0&1end{matrix} ight] From this it is easy to see that the isotropy group of our null electrovacuum includes rotations about the vec{e}_3 axis; two further generators are the two "parabolic" Lorentz transformations aligned with the vec{e}_3 direction given in the article on the Lorentz group. In other words, the isotropy group of any null electrovacuum is a three dimensional Lie group isomorphic to E(2), the isometry group of the euclidean plane.

The fact that these results are exactly the same in curved spacetimes as for electrodynamics in flat Minkowski spacetime is one expression of the equivalence principle.

Eigenvalues

The characteristic polynomial of the Einstein tensor of an "non-null" electrovacuum must have the form: chi(lambda) = left( lambda + 8 pi epsilon ight)^2 , left( lambda - 8 pi epsilon ight)^2 Using Newton's identities, this condition can be re-expressed in terms of the traces of the powers of the Einstein tensor as: t_1 = t_3 = 0, ; t_4 = t_2^2/4 where: t_1 = {G^a}_a, ; t_2 = {G^a}_b , {G^b}_a, ; t_3 = {G^a}_b , {G^b}_c , {G^c}_a, ; t_4 = {G^a}_b , {G^b}_c , {G^c}_d , {G^d}_a

This necessary criterion can be useful for checking that a putative non-null electrovacuum solution is plausible, and is sometimes useful for finding non-null electrovacuum solutions.

The characteristic polynomial of a "null" electrovacuum "vanishes identically", even if the energy density is "nonzero". This possibility is a tensor analogue of the well known that a null vector always has vanishing length, even if it is not the zero vector. Thus, every null electrovacuum has one "quadruple eigenvalue", namely zero.

Rainich conditions

In 1925, George Yuri Rainich presented purely mathematical conditions which are both necessary and sufficient for a Lorentzian manifold to admit an interpretation in general relativity as a "non-null" electrovacuum. These comprise three algebraic conditions and one differential condition. The conditions are sometimes useful for checking that a putative non-null electrovacuum really is what it claims, or even for finding such solutions.

No analogous necessary and sufficient conditions for a "null electrovacuum" are yet known, although some progress has been made.

Test fields

Sometimes one can assume that the field energy of any electromagnetic field is so small that its gravitational effects can be neglected. Then, to obtain an approximate electrovacuum solution, we need only solve the Maxwell equations on a given vacuum solution. In this case, the electromagnetic field is often called a test field, in analogy with the term test particle (denoting a small object whose mass is too small to contribute appreciably to the ambient gravitational field).

Here, it is useful to know that any Killing vectors which may be present will (in the case of a vacuum solution) automatically satisfy the curved spacetime Maxwell equations.

Note that this procedure amounts to assuming that the electromagnetic field, but not the gravitational field, is "weak". Sometimes we can go even further; if the gravitational field is also considered "weak", we can independently solve the linearised Einstein field equations and the (flat spacetime) Maxwell equations on a Minkowksi vacuum background. Then the (weak) metric tensor gives the approximate geometry; the Minkowski background is unobservable by physical means, but mathematically much simpler to work with, whenever we can get away with such a sleight-of-hand.

Examples

Noteworthy individual non-null electrovacuum solutions include:
*Reissner-Nordström electrovacuum (which describes the geometry around a charged spherical mass),
*Kerr-Newman electrovacuum (which describes the geometry around a charged, rotating object),
*Melvin electrovacuum (a model of a cylindrically symmetric magnetostatic field),
*Garfinkle-Melvin electrovacuum (like the preceding, but including a gravitational wave traveling along the axis of symmetry),
*Bertotti-Robinson electrovacuum: this is a simple spacetime having a remarkable product structure; it arises from a kind of "blow up" of the horizon of the Reissner-Nordström electrovacuum,
*Witten electrovacuums (discovered by Louis Witten, father of Edward Witten).

Noteworthy individual null electrovacuum solutions include:
*the monochromatic electromagnetic plane wave, an exact solution which is the general relativitistic analogue of the plane waves in classical electromagnetism,
*Bell-Szekeres electrovacuum (a colliding plane wave model).

Some well known families of electrovacuums are:
*Weyl-Maxwell electrovacuums: this is the family of all static axisymmetric electrovacuum solutions; it includes the Reissner-Nordström electrovacuum,
*Ernst-Maxwell electrovacuums: this is the family of all stationary axisymmetric electrovacuum solutions; it includes the Kerr-Newman electrovacuum,
*Beck-Maxwell electrovacuums: all nonrotating cylindrically symmetric electrovacuum solutions,
*Ehlers-Maxwell electrovacuums: all stationary cylindrically symmetric electrovacuum solutions,
*Szekeres electrovacuums: all pairs of colliding plane waves, where each wave may contain both gravitational and electromagnetic radiation; these solutions are null electrovacuums outside the interaction zone, but generally non-null electrovacuums inside the interaction zone, due to the non-linear interaction of the two waves after they collide.

Many pp-wave spacetimes admit an electromagnetic field tensor turning them into exact null electrovacuum solutions.

ee also

*Classification of electromagnetic fields
*Exact solutions in general relativity
*Lorentz group

References

*cite book | author=Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; and Herlt, Eduard | title=Exact Solutions of Einstein's Field Equations | location=Cambridge | publisher=Cambridge University Press | year=2003 | id=ISBN 0-521-46136-7 See "section 5.4" for the Rainich conditions, "section 19.4" for the Weyl-Maxwell electrovacuums, "section 21.1" for the Ernst-Maxwell electrovacuums, "section 24.5" for pp-waves, "section 25.5" for Szekeres electrovacuums, etc.

*cite book | author=Griffiths, J. B. | title=Colliding Plane Waves in General Relativity | location=Oxford | publisher=Clarendon Press | year=1991 | id=ISBN 0-19-853209-1 The definitive resource on colliding plane waves, including the examples mentioned above.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • electrovacuum — noun A particular solution to a field equation in general relativity …   Wiktionary

  • Lambdavacuum solution — In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical… …   Wikipedia

  • Null dust solution — In mathematical physics, a null dust solution (sometimes called a null fluid) is a Lorentzian manifold in which the Einstein tensor is null. Such a spacetime can be interpreted as an exact solution of Einstein s field equation, in which the only… …   Wikipedia

  • Exact solutions in general relativity — In general relativity, an exact solution is a Lorentzian manifold equipped with certain tensor fields which are taken to model states of ordinary matter, such as a fluid, or classical nongravitational fields such as the electromagnetic field.… …   Wikipedia

  • Nordström's theory of gravitation — In theoretical physics, Nordström s theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913… …   Wikipedia

  • Golden age of general relativity — The Golden Age of General Relativity is the period roughly from 1960 to 1975 during which the study of general relativity, which had previously been regarded as something of a curiosity, entered the mainstream of theoretical physics. During this… …   Wikipedia

  • Schwarzschild coordinates — In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres . In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical… …   Wikipedia

  • Monochromatic electromagnetic plane wave — In general relativity, the monochromatic electromagnetic plane wave spacetime is the analog of the monochromatic plane waves known from Maxwell s theory. The precise definition of the solution is a bit complicated, but very instructive. Any exact …   Wikipedia

  • Frame fields in general relativity — In general relativity, a frame field (also called a tetrad or vierbein) is a set of four orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The… …   Wikipedia

  • Test particle — In physical theories, a test particle is an idealized model of an object whose physical properties (usually mass, charge, or size) are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”