Charalambos D. Aliprantis

Charalambos D. Aliprantis
Charalambos D. Aliprantis
Mathematical economics
Born May 12, 1946(1946-05-12)
Cefalonia, Greece
Died February 27, 2009(2009-02-27) (aged 62)
Nationality American and Greek
Institution Purdue University
Indiana University – Purdue University Indianapolis (IUPUI)
Field Functional analysis and Operator theory
Mathematical economics
Alma mater Caltech
Influences Yuri Abramovich
Owen Burkinshaw
Contributions Banach-space & Riesz-space methods
Information at IDEAS/RePEc

Charalambos Dionisios Aliprantis (Greek: Χαράλαμπος Διονύσιος Αλιπράντης; May 12, 1946 – February 27, 2009) was a Greek-American economist who introduced Banach space and Riesz space methods in economic theory. He was born in Cefalonia, Greece in 1946 and came to the US in 1969, where he obtained his PhD in Mathematics from Caltech in June 1973.

He was a distinguished professor of Economics and Mathematics at Purdue University. He was the founding Editor of the journals Economic Theory and Annals of Finance, an Editor of Positivity and a founding member of the Society for the Advancement of Economic Theory.

References

About Aliprantis

Books by Aliprantis

  • Abramovich, Yuri A.; Aliprantis, Charalambos D. (2002). An Invitation to Operator Theory. Graduate Studies in Mathematics. 50. American Mathematical Society. ISBN 978-0-8218-2146-6. MR1921782. http://www.ams.org/bookstore-getitem/item=GSM-50. 
  • Aliprantis, Charalambos D.; Brown, Donald J.; Burkinshaw, Owen (1990). Existence and optimality of competitive equilibria. Berlin: Springer-Verlag. pp. xii+284. ISBN 3-540-52866-0. MR1075992. 
  • Aliprantis, Charalambos D; Burkinshaw, Owen (1998). Principles of real analysis (Third ed.). Academic. pp. xii+415 pp.. ISBN 0-12-050257-7. MR1669668. 
  • Aliprantis, Charalambos D.; Burkinshaw, Owen (2003). Locally solid Riesz spaces with applications to economics (second ed.). Providence, R.I.: American Mathematical Society. ISBN 0821834088. MR2011364. 
  • Aliprantis, Charalambos D.; Burkinshaw, Owen (2006). Positive operators (Reprint of the 1985 Academic Press original ed.). Dordrecht: Springer. pp. xx+376 pp.. ISBN 978-1-4020-5007-7, 1-4020-5007-0. MR2262133. 
  • Aliprantis, Charalambos D.; Tourky, Rabee (2007). Cones and duality. Graduate Studies in Mathematics. 84. Providence, RI: American Mathematical Society. pp. xiv+279 pp.. ISBN 978-0-8218-4146-4. MR2317344. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Mathematical economics — Economics …   Wikipedia

  • Tribu (mathématiques) — Pour les articles homonymes, voir Tribu et Algèbre (homonymie). En mathématiques, une tribu ou σ algèbre (lire sigma algèbre) ou plus rarement corps de Borel[1] sur un ensemble X est un ensemble non vide de parties de X, stable par passage au… …   Wikipédia en Français

  • Théorème d'extension de Carathéodory —  Ne pas confondre avec le théorème de Carathéodory en géométrie. En théorie de la mesure, le théorème d extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué …   Wikipédia en Français

  • Net (mathematics) — This article is about nets in topological spaces and not about ε nets in other fields. In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In… …   Wikipedia

  • Overlapping generations model — For the topic in population genetics, see Overlapping generations. An overlapping generations model, abbreviated to OLG model, is a type of economic model in which agents live a finite length of time and live long enough to endure into at least… …   Wikipedia

  • Real analysis — Real function redirects here. For the real part of a complex number, see real part. Real analysis, is a branch of mathematical analysis dealing with the set of real numbers and functions of a real variable. In particular, it deals with the… …   Wikipedia

  • Ordered vector space — A point x in R2 and the set of all y such that x≤y (in red). The order here is x≤y if and only if x1 ≤ y1 and x2 ≤ y2. In mathematics an ordered vector space or partially ordered vector space is a vector space equi …   Wikipedia

  • Completeness of the real numbers — Intuitively, completeness implies that there are not any “gaps” (in Dedekind s terminology) or “missing points” in the real number line. This contrasts with the rational numbers, whose corresponding number line has a “gap” at each irrational… …   Wikipedia

  • Least-upper-bound property — In mathematics, the least upper bound property is a fundamental property of the real numbers and certain other ordered sets. The property states that any non empty set of real numbers that has an upper bound necessarily has a least upper bound… …   Wikipedia

  • Andreu Mas-Colell — Minister of Economy and Knowledge of Catalonia Incumbent Assumed office December 29, 2010 Pri …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”