Daniel Goldston

Daniel Goldston
Daniel Goldston
Born January 4, 1954 (1954-01-04) (age 57)
Oakland, California
Nationality American
Fields Mathematics
Institutions San Jose State University
Alma mater California–Berkeley

Daniel Alan Goldston (born January 4, 1954 in Oakland, California) is an American mathematician who specializes in number theory. He is currently a professor of mathematics at San Jose State University.

Goldston is best known for the following result that he, János Pintz, and Cem Yıldırım proved in 2005:[1]

\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}=0

where p_n\ denotes the nth prime number. In other words, for every c>0\ , there exist infinitely many pairs of consecutive primes p_n\ and p_{n+1}\ which are closer to each other than the average distance between consecutive primes by a factor of c\ , i.e., p_{n+1}-p_n<c\log p_n\ .

This result was originally reported in 2003 by Dan Goldston and Cem Yıldırım but was later retracted.[2][3] Then Janos Pintz joined the team and they completed the proof in 2005.

In fact, if they assume the Elliott-Halberstam conjecture, then they can also show that primes within 16 of each other occur infinitely often, which is related to the twin prime conjecture.

See also

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Dan Goldston — Daniel Alan „Dan“ Goldston (* 4. Januar 1954 in Oakland) ist ein US amerikanischer Mathematiker, der sich mit analytischer Zahlentheorie beschäftigt. Leben und Karriere Goldston wuchs in Piedmont in Kalifornien auf und studierte ab 1971 am… …   Deutsch Wikipedia

  • Twin prime — A twin prime is a prime number that differs from another prime number by two. Except for the pair (2, 3), this is the smallest possible difference between two primes. Some examples of twin prime pairs are (3, 5), (5, 7), (11, 13), (17, 19), (29,… …   Wikipedia

  • Liste de personnes par nombre d'Erdős — Voici une liste non exhaustive de personnes ayant un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Référence …   Wikipédia en Français

  • Nombres premiers jumeaux — En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour la paire (2, 3), cette distance de 2 est la plus petite distance possible entre deux nombres premiers. Les plus petits nombres… …   Wikipédia en Français

  • Twin prime conjecture — The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:: There are infinitely many primes p such that p + 2 is also prime. Such a pair of prime numbers is called a prime twin. The conjecture …   Wikipedia

  • List of people by Erdős number — Paul Erdős was one of the most prolific writers of mathematical papers. He collaborated a great deal, having 511 joint authors, a number of whom also have many collaborators. The Erdős number measures the collaborative distance between an author… …   Wikipedia

  • Liste de personnes par nombre d'Erdos — Liste de personnes par nombre d Erdős Liste des personne avec un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Liens externes // …   Wikipédia en Français

  • San José State University — Infobox University name = San José State University native name = latin name = motto = Powering Silicon Valley established = 1857 type = Public endowment = $44.2 million staff = faculty = president = Jon Whitmore students = undergrad = 21,396… …   Wikipedia

  • Conjetura de los números primos gemelos — Dos números primos se denominan gemelos si uno de ellos es igual al otro más dos unidades. Así pues, los números primos 3 y 5 forman una pareja de primos gemelos. Otros ejemplos de pares de primos gemelos son 11 y 13 ó 29 y 31. Conforme se van… …   Wikipedia Español

  • Teoría analítica de números — En el ámbito de las matemáticas, la teoría analítica de números es una rama de la teoría de números que utiliza métodos del análisis matemático para resolver problemas sobre los números enteros.[1] A menudo se dice que comenzó con la introducción …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”