- Ronald Brown (mathematician)
Ronald Brown, MA,
D.Phil Oxon , FIMA, Emeritus Professor (born January 4, 1935) is an Englishmathematician . He is best known for his many, substantial contributions toHigher Dimensional Algebra andnon-Abelian Algebraic Topology , involvinggroupoids ,algebroids ,category theory , categorical generalizations ofGalois theory , and generalization of the van Kampen theorem tohigher homotopy groupoids . These include four fundamental books and textbooks: "Elements of Modern Topology", "Topology: a geometric account of general topology,homotopy types, and the fundamental groupoid ", "Topology and Groupoids", and "Nonabelian algebraic topology " (in two volumes) that contain original and important results in algebraic topology that are hard to obtain from other sources. His editorial contributions over many years have provided generous, expert help and international support to several generations of mathematicians in rapidly developing areas ofhigher dimensional algebra , non-Abelian algebraic topology, including Category Theory, non-Abelian and Abelian,Homology and Cohomology , andHigher Dimensional Homotopy with applications. Brown's interest in the general topology of function spaces began in the early 1960s, when he introduced the notion of an "adequate and convenientcategory of topological spaces forhomotopy theory ", thus stimulating a wide range of work onconvenient categories . Moreover, the term 'Higher Dimensional Algebra ' was introduced in a 1987 survey paper by Brown [cite journal|last=Ronald Brown|first= J.-L. Loday, |title=Homotopical excision, and Hurewicz theorems, for n-cubes of spaces|publisher=London Mathematical Society |journal=Proceedings London Mathematical Society|volume = 3|issue = 54|date =1987 |pages = 176–192|doi=10.1006/aima.1998.1724] , following from the earlier 'higher dimensional group theory ' introduced in 1982; this area has been remarkably successful not only in applications in other areas of mathematics, but also inquantum physics and computer science. Such potential applications that were recently suggested are novel algebraic topology and category theory approaches toextended quantum symmetry throughquantum groupoid representations tolocally-covariant ,quantum gravity theories andsymmetry breaking . Several of Dr. Brown's papers combine methods ofdouble groupoids with differential ideas onholonomy , leading to the development of higher order notions of 'flows', analogous to evolving systems inconcurrency theory . He collaborated with Higgins since the 1970s, and also with several other coworkers afterwards, on "crossed complexes" and the "relatedhigher homotopy groupoids ." He then completed the studies on purehigher order category theory in a publication with F.A. Al-Agl and R. Steiner, on "Multiple categories : the equivalence between a globular and cubical approach] ", published in "Advances in Mathematics", 170 (2002) 71-118.His key scientific results in mathematics to date have included:
double groupoids ,double algebroids ,cubical omega-groupoids with connections [R. Brown, Groupoids and crossed objects in algebraic topology., "Homology, Homotopy and Applications" 1 (1999), 1–78. [http://www.math.rutgers.edu/hha/volumes/1999/volume1-1.htm Available at HHA (hha- ftp) website at Rutgers University, USA] .] , and last-but-not least, proofs ofhigher-homotopy generalized van Kampen theorems in homotopy theory [ [http://www.citeulike.org/tag/higher-dimensional-algebra Higher Dimensional Algebra citations list] ] .Dr. Ronald Brown has 115 items listed on
MathSciNet , has given numerous presentations at scientific meetings, and published over 30 articles and items on popularization and teaching of mathematics. Two books are now in print, and a third one is close to being completed with two coworkers. He published over 200 research papers and presentations at scientific meetings, including several monographs and four books.Biography
Ronald Brown was born on January 4th, 1935 in London, England. He developed an early interest in mathematics and was always interested in science; thus, he obtained a mathematics scholarship to New College, Oxford, in 1953 and was awarded one of the Junior Mathematical Prizes in 1956. He then studied algebraic topology at Oxford, supervised first by J.H.C. Whitehead, (died 1960), and then, when at Liverpool, he was supervised by M.G. Barratt. Brown's thesis was submitted in 1961, under the supervision of Professor M.G. Barratt, and was on the homotopy type of function spaces, and this led to a long term interest in the applications of what are now called
monoidal closed categories . The particular interest in the general topology of function spaces led to the notion of a "category adequate and convenient for all purposes of topology", and in ref. [R. Brown. Function spaces and product topologies, "Quart. J. Math". (2) 15 (1964), 238-250.] he suggested for this end the categories ofHausdorff k-spaces andcontinuous functions , orHausdorff spaces andk-continuous functions , thus stimulating a wide range of work onconvenient categories . In collaboration with Peter Booth in the 1970s he helped develop Booth's notion offiber-wise mapping spaces , i.e. afunction space in thecategory of topological spaces over a given space B, [R. Brown (with P.I. Booth), "On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps.", "Gen. Topology Appl". 8 (1978) 165–179.] . The writing of a textbook on basic general and algebraic topology from a geometric viewpoint [R. Brown. [Books 1, 2 and 3] "Elements of Modern Topology", McGraw Hill, Maidenhead, (1968); second edition: "Topology: ageometric account of general topology,homotopy types , and thefundamental groupoid ", Ellis Horwood, Chichester (1988) 460 pp. Third edition: "Topology and Groupoids", Booksurge LLC, (2006) xxv+525p.] ] led to his development of a generalisation to thenon-connected case of the van Kampen theorem for thefundamental group , and then the use of groupoids for an exposition of most of1-dimensional homotopy theory .After two university teaching appointments at Liverpool and at
Hull University , he settled in 1970 atBangor University in Wales where he became an Emeritus Professor in 2001. During the 80's he exchanged a series of engaging letters with the German-born, French mathematicianAlexander Grothendieck concerning fundamental groupoids, and their correspondence in English triggered-- for a few short years-- a renewed commmunication of Alexander Grothendieck with the mathematical world. Brown visitedUniversité Louis Pasteur in Strasbourg as an Associate Visiting Professor during 1983 and 1984, and had fruitful excahnges with several other French mathematicians, as for example, ongroupoids withJean Pradines , a research associate of former ProfessorCharles Ehresmann , (one of the founding mathematicians ofcategory theory --along with Alexander Grothendieck-- in France).This suggested in 1965 the possibility of the existence and use of "
higher homotopy groupoids ", finally realised in a sequence of 12 papers by R. Brown and P.J. Higgins from 1978 to 2003, for which a recent survey is presented in [R. Brown. Crossed complexes and homotopy groupoids as non-commutative tools for higher dimensional local-to-global problems, "Proceedings of the Fields Institute Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories", September 23-28, "Fields Institute Communications" 43 (2004) 101-130. math.AT/0212274 [132] ] , and in a different form by R. Brown and J.-L. Loday in two papers in 1987, [ R. Brown and J.-L. LODAY, Homotopical excision, and Hurewicz theorems, for n-cubes of spaces, "Proc. London Math. Soc". (3) 54 (1987) 176-192. , and Van Kampen theorems for diagrams of spaces, "Topology" 26 (1987) 311-334. [49,51] . ]The idea from 1965 that these generalisations to higher dimensions of the
non-Abelian fundamental groupoid should be developed in the spirit ofgroup theory led to the term "higher dimensional group theory " [R.Brown (with J. Huebschmann), "Identities among relations", in Low dimensional topology, "London Math. Soc. Lecture Note Series", 48 (ed. R. Brown and T.L. Thickstun, Cambridge University Press) (1982), pp. 153–202.] in 1982 and then to "higher dimensional algebra" in 1987 in the survey paper [R. Brown. From groups to groupoids: a brief survey, "Bull. London Math. Soc". 19 (1987) 113-134 [50] . **A major theme of the book is that all of one-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. This raised the question of applications of groupoids in higher homotopy theory, and so to a long march to higher order Van Kampen Theorems, which give new higher dimensional, non-Abelian, local-to-global methods, with relations to Homology and K-theory. ] . The applications tohigher homotopy van Kampen theorems , which are in the area of 'local-to-global theorems', lead to some specific non-Abelian calculations in homotopy theory, for example of integral homotopy types, unavailable by other means, and to an understanding of certain homotopical ideas. The use ofcubical methods in this work has also had applications in the use of algebraic and topological methods in thetheory of concurrency in computer science . The investigation of "higher order symmetry " has also had applications tohomotopy theory , in [R. Brown and N.D. Gilbert, Algebraic models of 3-types and automorphism structures for crossed modules, "Proc. London Math. Soc". (3) 59 (1989) 51-73. [59] ] . He has also worked on topological and differential groupoids, particularly with students, and the notion ofholonomy andmonodromy , pursuing ideas ofCharles Ehresmann andJ. Pradines . Working with T. Porter and A. Bak, Dr. Brown has developed the work of A. Bak on "global actions " to the notion ofgroupoid atlas , a kind of "algebraic patching" concept, and this has found applications inmultiagent systems . Dr. Brown also has several papers in the area ofsymbolic computation andmathematical rewriting .A long term interest in the popularization of mathematics led to a number of [http://www.bangor.ac.uk/r.brown/publar.html articles in this area] , and to a collaboration in presenting the work of the sculptor John Robinson [ [http://www.popmath.org.uk Collaboration with sculptor John Robinson on using mathematics in abstract art] ] .
Presently, in retirement, Professor Ronald Brown actively pursues his research in the beautiful surroundings of the village of
Deganwy on the Conwy Estuary.University education
· In 1956
B.A. at Oxford University. In 1961Ph.D. at Liverpool University· In 1962D.Phil. at Oxford UniversityAcademic positions
· In 1959 he was appointed an Assistant Lecturer, and then Lecturer at
Liverpool University .· During 1964–70 he worked as a Senior Lecturer, and then Reader at Hull University.· From 1970 to 1999 he taught and carried out research as a full Professor of Pure Mathematics at theUniversity of Wales, Bangor , UK.· During 1970–1993 he functioned as the Head of Pure Mathematics, and also of the School of Mathematics in several variants· In 1990 he was elected as Chairman of the University of Wales Validation Board for a four year term· During 1983–84 he visited as a`Professeur associé pour un mois' , at theUniversité Louis Pasteur in Strasbourg.· From 1999 to 2001 he was appointed a Half-time Research Professorship,and in September 2001 he became Professor Emeritus of the University of Wales.Between 1959 and 2001 he advised 23 successful Ph.D. students in Mathematics.
Leading assignments
· 1989–2001: Director,
Centre for the Popularisation of Mathematics , University of Wales, Bangor.· 1995–2000: Coordinator, '
INTAS Project onAlgebraic K-theory ,groups and categories', for Bangor, theUniversity of Bielefeld ,Georgian Mathematical Institute ,State Universities of Moscow and of St. Petersburg , and theSteklov Institute , St. Petersburg.· 2002–2004
Leverhulme Emeritus Research Fellowship for a project on"Crossed complexes and homotopy groupoids ".Editorships
· Between 1968 and 86 he contributed also as Editor to the Chapman & Hall, Mathematics Series.· During 1975–1994 he was on the Editorial Advisory Board of the London Mathematical Society.· In 1995 he became a Founding member on the Management Committee of the Editorial Board of several electronic journals: "Theory and Applications of Categories." · 1996–2007 Editorial Board: "Applied Categorical Structures" (Kluwer). · Since 1999 he is a Founding member of the electronic journal: "Homology, Homotopy and Applications". 2006 — "Journal of Homotopy and Related Structures."
Honors and awards
*The Leverhulme Emeritus Fellowship
*August, 2003: Opening lecture, `
Global actions andgroupoid atlases ', to the conference `Directions inK-theory ', Poznan, in honour of the 60th birthday ofA. Bak .*2000: Grant to produce a
CD-ROM as part of an EC Project ", 'Raising Public Awareness of Mathematics in WMY2000 '."*2003-2005: EPSRC Grant: Higher Dimensional algebra and
Differential Geometry (Visiting Fellowship forJ.F. Glazebrook ,Eastern Illinois University , USA).elected publications
The following list of publications is selected to represent the impressively wide range of research carried out by Dr. Ronald Brown. For example his 1964 paper on "The
twisted Eilenberg-Zilber theorem " became influential because it contained the first version of what is now known as theHomological Perturbation Lemma ; the resultingHomological Perturbation Theory has afterwards proved to be an important theoretical and computational tool in algebraic topology and in thecomputation of resolutions .*R. Brown. [Books 1, 2 and 3] "Elements of Modern Topology", McGraw Hill, Maidenhead, (1968); second edition: "Topology: a
geometric account of general topology,homotopy types , and thefundamental groupoid ", Ellis Horwood, Chichester (1988) 460 pp. Third edition: "Topology and Groupoids", Booksurge LLC, (2006) xxv+525p.]*R. Brown (with P.J. HIGGINS, R.SIVERA). [Book 4] "Nonabelian algebraic topology," 2007 (vol.1), and vol.2 in 2008 ("in preparation").
*R. Brown. Function spaces and product topologies, "Quart. J. Math". (2) 15 (1964), 238-250. [2]
* R. Brown. The twisted Eilenberg-Zilber theorem., "Celebrazioni Archimedi de secolo XX, Syracusa", 1964: "Simposi di topologia" (1967) 33–37.
* R. Brown (with P.I. BOOTH), On the application of
fibred mapping spaces toexponential laws forbundles ,ex-spaces and othercategories of maps ., "Gen. Top. Appl". 8 (1978) 165–179.* R.Brown (with J. HUEBSCHMANN), "
Identities among relations", in "Low dimensional topology , London Math. Soc. Lecture Note Series", 48 (ed. R. Brown and T.L. Thickstun, Cambridge University Press) (1982), pp. 153–202. **This paper onidentities among relations has been useful to many as a basic source.* R.Brown (with S.P. HUMPHRIES), "
Orbits undersymplectic transvections II: the case K = F2", "Proc. London Math. Soc". (3) 52 (1986) 532–556.* R.Brown (with P.J. HIGGINS),
Tensor products and homotopies foromega-groupoids and crossed complexes, "J. Pure Appl. Alg". 47 (1987) 1-33.* R.Brown (with J.-L. LODAY),
Homotopical excision, and Hurewicz theorems , forn-cubes of spaces , "Proc. London Math. Soc". (3) 54 (1987) 176–192.* R. Brown. From groups to groupoids: a brief survey, "Bull. London Math. Soc"., 19 (1987) 113-134. **A major theme of the book is that all of
one-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. This raised the question of applications of groupoids inhigher homotopy theory , and so to a long march tohigher order Van Kampen Theorems , which give new higher dimensional, non-Abelian,local-to-global methods , with relations toHomology andK-theory .* R. Brown (with J.-L. LODAY).,
Van Kampen theorems fordiagrams of spaces , "Topology", 26 (1987) 311–334.* R. Brown (with N.D. GILBERT).,
Algebraic models of 3-types andautomorphism structures forcrossed modules , "Proc. London Math. Soc". (3) 59 (1989) 51–73.* R. Brown (with A. RAZAK SALLEH).,
Free crossed resolutions of groups and presentations ofmodules of identities among relations", "LMS J. Comp. and Math". 2 (1999) 28–61. Interest inalgorithmic procedures and specific computations was shown in [107] and [124] . Such computations also occur in [51] , which introduced anon-Abelian tensor product of groups which act on each other, and for which the bibliography now extends to over 100 papers.* R. Brown (with A. HEYWORTH)., Using rewriting systems to compute left
Kan extensions andinduced actions of categories , "J. Symbolic Computation" 29 (2000) 5–31.* R. Brown (with I. IÇEN),
Locally Lie subgroupoids and theirLie holonomy and monodromy groupoids , "Topology and its Applications". 115 (2001) 125–138.* R. Brown (with M. GOLASINSKI, T.PORTER and A.P.TONKS)., On
function spaces ofequivariant maps and theequivariant homotopy theory of crossed complexes II: the generaltopological group case., "K-Theory" 23 (2001) 129–155.* R. Brown (with A. AL-AGL and R. STEINER).,
Multiple categories : the equivalence between aglobular andcubical approach, "Advances in Mathematics", 170 (2002) 71–118.* R. Brown(with I. IÇEN)., Towards a
2-dimensional notion of holonomy , "Advances in Mathematics", 178 (2003) 141–175.* R. Brown (with C.D.WENSLEY)., Computation and homotopical applications of
induced crossed modules , "Journal of Symbolic Computation", 35 (2003) 59–72.* R. Brown.
Crossed complexes andhomotopy groupoids asnon-commutative tools forhigher dimensional local-to-global problems , "Proceedings of theFields Institute Workshop onCategorical Structures forDescent and Galois Theory ,Hopf Algebras andSemiabelian Categories ", September 23–28, "Fields Institute Communications" 43 (2004) 101–130. math.AT/0212274 .* R. Brown (with Bak, A., Minian, G., and Porter, T.),
Global actions ,groupoid atlases and applications, "J. Homotopy and Related Structures", 1 (2006) 101-167.Notes
References
* R. Brown (with Bak, A., Minian, G., and Porter, T.).,
Global actions ,groupoid atlases and applications., "J. Homotopy and Related Structures": 1 (2006) 101–167.* [http://www.citeulike.org/tag/higher-dimensional-algebra Higher Dimensional Algebra citations list]
* [http://www.springerlink.com/content/0v565w5786lt4254/ Georgescu, George and Popescu, Andrei. A common generalization for MV-algebras and Lukasiewicz-Moisil algebras, "Archive for Mathematical Logic", Vol. 45, No. 8. (November 2006), pp. 947-981. (in reference to Heyting-algebra higher-dimensional-algebra hyperalgebras Lukasiewicz-Moisil-algebras metalogics MV-algebras by Scis0000002 on 2007-07-11)]
* [http://arxiv.org/abs/q-alg/9702014 John C. Baez, James Dolan., Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes.,Quantum Algebra and Topology, "Adv. Math." 135 (1998), 145-206] .
* [http://arxiv.org/abs/math.QA/9811139 John C. Baez, Laurel Langford., Higher-Dimensional Algebra IV: 2-Tangles.,(Quantum Algebra (math.QA); Algebraic Topology (math.AT); Category Theory (math.CT)), "Adv. Math." 180 (2003), 705-764.]
* [http://www.citeulike.com/user/mstone/article/701268 John C Baez, Aaron D Lauda. 2-groups category-theory higher-dimensional-algebra, and "Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes (10 Feb 1997")]
* [http://arxiv.org/abs/q-bio/0406045 I.C. Baianu.2004. Complex Systems Analysis of Cell Cycling Models in Carcinogenesis., arXiv:q-bio/0406045v2 q-bio.OT]
* [http://arxiv.org/abs/math/0307200v3 John C Baez, Aaron D Lauda. 2004. Higher-Dimensional Algebra V: 2-Groups. "Theory and Applications of Categories" 12 (2004), 423-491. arXiv:math/0307200v3 -math.QA]
* [http://arxiv.org/abs/math/0507014 G. L. Litvinov. The Maslov dequantization, idempotent and topical mathematics: A brief introduction., arXiv:math/0507014v1 math.GM]
External links
* [http://www.bangor.ac.uk/~mas010/ Ronald Brown's Home Page]
* [http://www.bangor.ac.uk/~mas010/publicfull.htm Full list of Professor Ronald Brown's publications]
* [http://www.informatics.bangor.ac.uk/public/mathematics/research/staffres.html Who's Who in Mathematics at Bangor University, UK]
* [http://www.informatics.bangor.ac.uk/public/mathematics/research/people.html Mathematics Research - List of Mathematicians at Bangor]Inline and on line citations
* [http://www.bangor.ac.uk/r.brown/pstacks.htm The origins of Alexander Grothendieck's `Pursuing Stacks'] "This is an account of how `Pursuing Stacks' was written in response to a correspondence in English with Ronnie Brown and Tim Porter at Bangor, which continued until 1991."
*1. Ronald Brown, J.-L. Loday, (1987). "Homotopical excision, and Hurewicz theorems, for n-cubes of spaces". Proceedings London Mathematical Society 3 (54): 176–192. [http://www.lms.ac.uk/publications/proceedings/plmsindx.pdf Proceedings London Mathematical Society 3 (54): 176–192. London Mathematical Society.]
*2 [http://www.citeulike.org/tag/higher-dimensional-algebra Higher Dimensional Algebra citations list]
Recent citations on line:
John C. Baez and Alissa S. Crans.2004, Higher-Dimensional Algebra VI: Lie 2-Algebras., "Theory and Applications of Categories" 12 (2004), 492-528., as follows:
"* [11] R. Brown, Groupoids and crossed objects in algebraic topology., "Homology, Homotopy and Applications" 1 (1999), 1–78. [http://www.math.rutgers.edu/hha/volumes/1999/volume1-1.htm Available at HHA (hha- ftp) website at Rutgers University, USA] .
* [12] R. Brown and P. Higgins, "Cubical abelian groups with connections areequivalent to chain complexes, Homology, Homotopy and Applications", 5(2003), 49–52.
* [13] R. Brown and C. B. Spencer, G-groupoids, crossed modules, and the classifying space of a topological group, Proc. Kon. Akad. v. Wet. 79 (1976),296–302."
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9F-45KKV3S-1J&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=10&md5=843bfd6ca8a007d195d3ef20d5108fb1 M. A. Batanin Monoidal Globular Categories As a Natural Environment for the Theory of Weak n- Categories., "Advances in Mathematics", Volume 136, Issue 1, 1 June 1998, Pages 39-103., doi:10.1006/aima.1998.1724]
Wikimedia Foundation. 2010.