- Plutonium-239
Infobox isotope
alternate_names =
symbol =Pu
mass_number =239
mass =
num_neutrons =145
num_protons =94
abundance =
halflife = 24,110 years
error_halflife =
background = #FF6
text_color =
decay_product =Uranium-235
decay_symbol =U
decay_mass =235
decay_mode1 =Alpha decay
decay_energy1 =
decay_mode2 =
decay_energy2 =
decay_mode3 =
decay_energy3 =
decay_mode4 =
decay_energy4 =
parent = Curium-243
parent_symbol =Cm
parent_mass =243
parent_decay =a
parent2 =Americium-239
parent2_symbol =Am
parent2_mass =239
parent2_decay =ec
parent3 =Neptunium-239
parent3_symbol =Np
parent3_mass =239
parent3_decay =b-
spin = +½
excess_energy =
error1 =
binding_energy =
error2 = Plutonium-239 is anisotope ofplutonium . Plutonium-239 is the primaryfissile isotope used for the production ofnuclear weapon s, althoughuranium-235 has also been used and is currently the secondary isotope. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel innuclear reactor s, along with uranium-235 anduranium-233 .Plutonium-239 has a half life of 24,110 years. The nuclear properties of plutonium-239, as well as the ability to produce large amounts of nearly pure plutonium-239, led to its use in
nuclear weapon s andnuclear power . The fissioning of an atom of uranium-235 in the reactor of anuclear power plant produces two to three neutrons, and these neutrons can be absorbed by uranium-238 to produce plutonium-239 and otherisotope s. Plutonium-239 can also absorb neutrons and fission along with the uranium-235. Plutonium fissions provide about one-third of the total energy produced in a typical commercial nuclear power plant. The use of plutonium-239 in power plants occurs without it ever being removed from the nuclear reactor fuel, "i.e.", it is fissioned in the samefuel rod s in which it is produced.Manufacture
Pu-239 is normally manufactured in nuclear reactors by transmutation of individual atoms of one of the isotopes of uranium present in the fuel rods. Occasionally, when an atom of U-238 is exposed to
neutron radiation , its nucleus will capture aneutron , changing it to U-239. This happens more easily withfast neutron s than withslow neutron s, although both can be used. The U-239 then rapidly undergoes twobeta decay s. After the 238U absorbs a neutron to become 239U it then emits anelectron and an anti-neutrino () by β− decay to becomeNeptunium-239 (239Np) and then emits another electron and anti-neutrino by a second β− decay to become 239Pu::
:
Fission activity is relatively rare, so even after significant exposure, the Pu-239 is still mixed with a great deal of U-238 (and possibly other isotopes of uranium), oxygen, other components of the original material, and
fission products . The Pu-239 can then be chemically separated from the rest of the material to yield high-purity Pu-239 metal.Pu-239 has a higher probability for fission than U-235 and a larger number of neutrons produced per fission event, so it has a smaller
critical mass . Pure Pu-239 also has a reasonably low rate of neutron emission due tospontaneous fission (10 fission/s-kg), making it feasible to assemble a supercritical mass before predetonation.In practice, however, reactor-bred plutonium produced will invariably contain a certain amount of Pu-240 due to the tendency of Pu-239 to absorb an additional neutron during production. Pu-240 has a high rate of spontaneous fission events (415,000 fission/s-kg), making it an undesirable contaminant. As a result, plutonium containing a significant fraction of Pu-240 is not well-suited to use in nuclear weapons; it emits
neutron radiation , making handling more difficult, and its presence can lead to a "fizzle" in which a small explosion occurs, destroying the weapon but not causing fission of a significant fraction of the fuel. It is because of this limitation that plutonium-based weapons must be implosion-type, rather than gun-type. (The US has constructed a single experimental bomb using only reactor-grade plutonium.) Moreover, Pu-239 and Pu-240 cannot be chemically distinguished, so expensive and difficultisotope separation would be necessary to acquire enough fuel to build a nuclear weapon using such a mix. Weapons-grade plutonium must contain no more than 7% Pu-240; this is achieved by only exposing U-238 to neutron sources for short periods of time to minimize the Pu-240 produced. Pu-240 exposed to alpha particles will incite a nuclear fission.Plutonium is classified according to the percentage of the contaminant plutonium-240 that it contains: Super grade 2-3%; Military grade less than 7%; Fuel grade 7-18%; Reactor grade 18% or more.
A nuclear reactor that is used to produce plutonium must therefore have a means for exposing U-238 to neutron radiation and for frequently rotating the fuel. A reactor running on unenriched or moderately enriched uranium naturally contains a great deal of U-238. However, most commercial
nuclear power reactor designs require the entire reactor to shut down, often for weeks, in order to change the fuel elements. They therefore produce plutonium in a mix of isotopes that is not well-suited to weapon construction. Such a reactor could have machinery added that would permit U-238 slugs to be placed near the core and changed frequently, or it could be shut down frequently, so proliferation is a concern; for this reason, theInternational Atomic Energy Agency inspects licensed reactors often. A few commercial power reactor designs, such as the "reaktor bolshoy moshchnosti kanalniy" (RBMK ) and pressurised heavy water reactor (PHWR ), do permit refueling without shutdowns, and they may pose a proliferation risk. (In fact, theRBMK was built by the Soviet Union during the cold war, so despite their ostensibly peaceful purpose, it is likely that plutonium production was a design criterion.)Most plutonium is produced in
research reactor s or plutonium production reactors calledbreeder reactor s because they produce more plutonium than they consume fuel; in principle, such reactors make extremely efficient use of natural uranium. In practice, their construction and operation is sufficiently difficult that they are generally only used to produce plutonium. Breeder reactors are generally (but not always)fast reactor s, sincefast neutron s are somewhat more efficient at plutonium production.Isotope|element=Plutonium
lighter=Plutonium-238
heavier=Plutonium-240
before=Curium-243 (α)Americium-239 (EC)Neptunium-239 "'(β-)
after=Uranium-235 "'(α)= External links =
* [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+plutonium,+radioactive NLM Hazardous Substances Databank – Plutonium, Radioactive]ee also
*
Teller-Ulam design
*
Wikimedia Foundation. 2010.