Sparse PCA

Sparse PCA

Principal component analysis(PCA) is a vector space transform used to reduce multidimensional data sets to lower dimensions for analysis. It finds linear combinations of variables( called "principal components") that correspond to directions of maximal variance in the data.

Sparse PCA [ cite journal
author = H. Zou and T. Hastie and R. Tibshirani
year = 2004
title = Sparse principal component analysis
journal = Technical report, statistics department, Stanford University, 2004
url = http://www-stat.stanford.edu/~hastie/Papers/sparsepc.pdf
] is a technique to find sets of sparse vectors spanning a low-dimensional space that explain most of the variance present in the data.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Principal component analysis — PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.878, 0.478) direction and of 1 in the orthogonal direction. The vectors shown are the eigenvectors of the covariance matrix scaled by… …   Wikipedia

  • Nonlinear dimensionality reduction — High dimensional data, meaning data that requires more than two or three dimensions to represent, can be difficult to interpret. One approach to simplification is to assume that the data of interest lies on an embedded non linear manifold within… …   Wikipedia

  • Mel Gibson — This article is about the actor. For the basketball player, see Mel Gibson (basketball). Mel Gibson Mel Gibson at the 2011 Cannes Film Festival …   Wikipedia

  • Scale-invariant feature transform — Feature detection Output of a typical corner detection algorithm …   Wikipedia

  • Non-negative matrix factorization — NMF redirects here. For the bridge convention, see new minor forcing. Non negative matrix factorization (NMF) is a group of algorithms in multivariate analysis and linear algebra where a matrix, , is factorized into (usually) two matrices, and… …   Wikipedia

  • Matching pursuit — Signal reconstruction with matching pursuit algorithm. Matching pursuit is a type of numerical technique which involves finding the best matching projections of multidimensional data onto an over complete dictionary D. The basic idea is to… …   Wikipedia

  • Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… …   Wikipedia

  • MDMA — Systematic (IUPAC) name (RS) 1 (benzo[d][1,3]dioxol 5 …   Wikipedia

  • Гистограмма направленных градиентов — (англ. Histogram of Oriented Gradients, HOG) – дескрипторы особых точек, которые используются в компьютерном зрении и обработке изображений с целью распознавания …   Википедия

  • Benzylpiperazine — Systematic (IUPAC) name 1 benzylpiperazine …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”