- Rational motion
In
kinematics , the motion of arigid body is defined as a continuous set of displacements. One-parameter motions can be definedas a continuous displacement of moving object with respect to a fixed frame in Euclidean three-space ("E"3), where the displacement depends on one parameter, mostly identified as time.Rational Motions are defined by
rational function s (ratio of twopolynomial function s) of time. They produce rationaltrajectories , and therefore they integrate well with the existingNURBS (Non-Uniform Rational B-Spline) based industry standardCAD/CAM systems. They are readily amenable to the applications of existing Computer Aided Geometric Design (CAGD) algorithms. By combining kinematics of rigid body motions with NURBS geometry ofcurves andsurfaces , methods have been developed forcomputer aided design of rational motions.These CAD methods for motion design find applications in
animation in computer graphics (key frameinterpolation ), trajectory planning inrobotics (taught-position interpolation), spatial navigation invirtual reality , computer aided geometric design of motion via interactive interpolation,CNC tool path planning , and task specification inmechanism synthesis .Background
There has been a great deal of research in applying the principles of Computer Aided Geometric Design (CAGD) to the problem of computer aided motion design. In recent years, it has been well established that rational Bezier and rational B-spline based curve representation schemes can be combined with
dual quaternion representation Citation
author = McCarthy, J. M.
year = 1990
publisher = MIT Press Cambridge, MA, USA] ofspatial displacements to obtain rational Bezier and B-splinemotions. Ge and Ravani cite journal
author = Ge, Q. J.; Ravani, B.
year = 1994
title = Computer Aided Geometric Design of Motion Interpolants
journal = Journal of mechanical design(1990)
volume = 116
issue = 3
pages = 756–762
doi = 10.1115/1.2919447
url = http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMDEDB000116000003000756000001&idtype=cvips&gifs=yes] , cite journal
author = Ge, Q. J.; Ravani, B.
year = 1994
title = Geometric Construction of Bézier Motions
journal = Journal of mechanical design(1990)
volume = 116
issue = 3
pages = 749–755
doi = 10.1115/1.2919446
url = http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMDEDB000116000003000749000001&idtype=cvips&gifs=yes] developed a new framework for geometric constructionsof spatial motions by combining the concepts from kinematics and CAGD. Their work was built upon the seminal paper of Shoemake cite journal
author = Shoemake, K.
year = 1985
title = Animating rotation with quaternion curves
journal = Proceedings of the 12th annual conference on Computer graphics and interactive techniques
pages = 245–254
doi = 10.1145/325334.325242
url = http://portal.acm.org/citation.cfm?id=325242] , in which heused the concept of aquaternion Cite book
author = Bottema, O.; Roth, B.
year = 1990
url = http://books.google.co.uk/books?id=f8I4yGVi9ocC
publisher =Dover Publications
isbn =0486663469
tile= Theoretical kinematics] forrotation interpolation. A detailed list of references on this topic can be found in cite journal
author = Roschel, O.
year = 1998
title = Rational motion design—a survey
journal = Computer-Aided Design
volume = 30
issue = 3
pages = 169–178
doi = 10.1016/S0010-4485(97)00056-0
url = http://www.ingentaconnect.com/content/els/00104485/1998/00000030/00000003/art00056] and cite journal
author = Purwar, A.; Ge, Q. J.
year = 2005
title = On the effect of dual weights in computer aided design of rational motions
journal = ASME Journal of Mechanical Design
volume = 127
issue = 5
pages = 967-972
doi = 10.1115/1.1906263
url = http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JMDEDB000127000005000967000001&idtype=cvips&gifs=yes88] .Rational Bezier and B-Spline Motions
Let hat { extbf{q = extbf{q} + varepsilon extbf{q}^0denote a unit dual quaternion. A homogeneous dual quaternion may bewritten as a pair of quaternions, hat { extbf{Q= extbf{Q} +varepsilon extbf{Q}^0; where extbf{Q} = w extbf{q}, extbf{Q}^0 = w extbf{q}^0 + w^0 extbf{q}. This is obtained byexpanding hat { extbf{Q = hat {w} hat { extbf{q using
dual number algebra (here, hat{w}=w+varepsilon w^0).In terms of dual quaternions and the
homogeneous coordinates of a point extbf{P}:(P_1, P_2, P_3, P_4) of the object, the transformation equation in terms of quaternions is given by (see Who|date=July 2008] for details)ilde { extbf{P = extbf{Q} extbf{P} extbf{Q}^ast + P_4 [( extbf{Q}^0) extbf{Q}^ast - extbf{Q}( extbf{Q}^0)^ast] , where extbf{Q}^ast and extbf{Q}^0)^ast areconjugates of extbf{Q} and extbf{Q}^0, respectively andilde { extbf{P denotes homogeneous coordinates of the pointafter the displacement.
Given a set of unit dual quaternions and dual weights hat{ extbf{q_i, hat {w}_i; i = 0...n respectively, thefollowing represents a rational Bezier curve in the space ofdual quaternions.
hat{ extbf{Q(t) = sumlimits_{i = 0}^n {B_i^n (t)hat { extbf{Q_i} =sumlimits_{i = 0}^n {B_i^n (t)hat {w}_i hat{ extbf{q_i}
where B_i^n(t) are the Bernstein polynomials. The Bezier dual quaternion curve given by above equation defines a rational Bezier motion ofdegree 2n.
Similarly, a B-spline dual quaternion curve, which defines a NURBSmotion of degree 2p, is given by,
hat { extbf{Q(t) =sumlimits_{i = 0}^n {N_{i,p}(t) hat { extbf{Q_i } =sumlimits_{i = 0}^n {N_{i,p}(t) hat {w}_i hat { extbf{q_i }
where N_{i,p}(t) are thepth-degree B-spline basis functions.
A representation for the rational Bezier motion and rationalB-spline motion in the Cartesian space can be obtained bysubstituting either of the above two preceding expressions for hat { extbf{Q(t) in the equation for point transform. In what follows, we deal with the case of rational Bezier motion. The, the trajectory of a point undergoing rational Beziermotion is given by,
ilde { extbf{P^{2n}(t) = [H^{2n}(t)] extbf{P},
H^{2n}(t)] = sumlimits_{k = 0}^{2n}{B_k^{2n}(t) [H_k] },
where H^{2n}(t)] is the matrixrepresentation of the rational Bezier motion of degree2n in Cartesian space. The following matricesH_k ] (also referred to as Bezier ControlMatrices) define the "affine control structure" of the motion:
H_k] = frac{1}{C_k^{2nsumlimits_{i+j=k}{C_i^n C_j^n w_i w_j [H_{ij}^ast] },
where H_{ij}^ast] = [H_i^+] [H_j^-] + [H_j^-] [H_i^{0+}] - [H_i^+] [H_j^{0-} ] + (alpha_i - alpha_j) [H_j^-] [Q_i^+] .
In the above equations, C_i^n and C_j^nare binomial coefficients and alpha_i = w_i^0/w_i, alpha_j =w_j^0/w_j are the weight ratios and
H_j^-] = left [ egin{array}{rrrr}q_{j,4} & -q_{j,3} & q_{j,2} & -q_{j,1} \q_{j,3} & q_{j,4} & -q_{j,1} & -q_{j,2} \-q_{j,2} & q_{j,1} & q_{j,4} & -q_{j,3} \q_{j,1} & q_{j,2} & q_{j,3} & q_{j,4} \end{array} ight] ,
Q_i^+] = left [ egin{array}{rrrr}0 & 0 & 0 & q_{i,1} \0 & 0 & 0 & q_{i,2} \0 & 0 & 0 & q_{i,3} \0 & 0 & 0 & q_{i,4} \end{array} ight] ,
H_i^{0+}] = left [egin{array}{rrrr}0 & 0 & 0 & q_{i,1}^0 \0 & 0 & 0 & q_{i,2}^0 \0 & 0 & 0 & q_{i,3}^0 \0 & 0 & 0 & q_{i,4}^0 \end{array} ight] ,
H_j^{0-}] = left [egin{array}{rrrr}0 & 0 & 0 & -q_{j,1}^0 \0 & 0 & 0 & -q_{j,2}^0 \0 & 0 & 0 & -q_{j,3}^0 \0 & 0 & 0 & q_{j,4}^0 \end{array} ight] ,
H_i^+] = left [ egin{array}{rrrr}q_{i,4} & -q_{i,3} & q_{i,2} & q_{i,1} \q_{i,3} & q_{i,4} & -q_{i,1} & q_{i,2} \-q_{i,2} & q_{i,1} & q_{i,4} & q_{i,3} \-q_{i,1} & -q_{i,2} & -q_{i,3} & q_{i,4} \end{array} ight] .
In above matrices, q_{i,1}, q_{i,2}, q_{i,3}, q_{i,4})are four components of the real part extbf{q}_i) andq_{i,1}^0, q_{i,2}^0, q_{i,3}^0, q_{i,4}^0) are fourcomponents of the dual partextbf{q}_i^0) of the unitdual quaternion hat { extbf{q_i).
Example
References
External links
* [http://cadcam.eng.sunysb.edu/ Computational Design Kinematics Lab]
* [http://my.fit.edu/~pierrel/ Robotics and Spatial Systems Laboratory (RASSL)]
* [http://synthetica.eng.uci.edu:16080/~mccarthy/ Robotics and Automation Laboratory]ee also
*
Quaternion andDual quaternion
*NURBS
*Computer Animation
*Robotics
*Robot kinematics
*Computational Geometry
*CNC machining
*Mechanism design
Wikimedia Foundation. 2010.