Massera's lemma

Massera's lemma

In stability theory and nonlinear control, Massera's lemma, named after José Luis Massera, deals with the construction of the Lyapunov function to prove the stability of a dynamical system.[1] The lemma appears in (Massera 1949, p. 716) as the first lemma in section 12, and in more general form in (Massera 1956, p. 195) as lemma 2. In 2004, Massera's original lemma for single variable functions was extended to the multivariable case, and the resulting lemma was used to prove the stability of switched dynamical systems, where a common Lyapunov function describes the stability of multiple modes and switching signals.

Contents

Massera's original lemma

Massera’s lemma is used in the construction of a converse Lyapunov function of the following form (also known as the integral construction)

V(\zeta)=\int_0^\infty G(|\varphi(t,\zeta)|)dt

for an asymptotically stable dynamical system whose stable trajectory starting from ζ is φ(t,ζ)

The lemma states:

Let g: [0, \infty)\rightarrow R be a positive, continuous, strictly decreasing function with g(t)\rightarrow 0 as t\rightarrow\infty. Let h: [0, \infty)\rightarrow R be a positive, continuous, nondecreasing function. Then there exists a function G:[0,\infty) \rightarrow [0,\infty) such that

  • G and its derivative G' are class-K functions defined for all t ≥ 0
  • There exist positive constants k1, k2, such that for any continuous function u satisfying 0 ≤ u(t) ≤ g(t) for all t ≥ 0,
\int_0^\infty G(u(t)) \, dt \leq k_1; \quad \int_0^\infty G'(u(t))h(t) \, dt \leq k_2.

Extension to multivariable functions

Massera's lemma for single variable functions was extended to the multivariable case by Vu and Liberzon.[2]

Let g: [0, \infty)\rightarrow R be a positive, continuous, strictly decreasing function with g(t)\rightarrow 0 as t\rightarrow\infty. Let h: [0, \infty)\rightarrow R be a positive, continuous, nondecreasing function. Then there exists a differentiable function G:[0,\infty) \rightarrow [0,\infty) such that

  • G and its derivative G' are class-K functions on [0, \infty).
  • For every positive integer l, there exist positive constants k1, k2, such that for any continuous function u: \mathbb{R}^l \rightarrow[0, \infty) satisfying
0\leq u(t_1, \ldots, t_l) \leq g(t_1 + \cdots + t_l) for all t_i \ge 0, i=1,\ldots,l
we have
\int_0^\infty \cdots \int_0^\infty G(u(s_1, \ldots, s_l)) ds_1 \ldots ds_l < k_1
\int_0^\infty \cdots \int_0^\infty G'(u(s_1, \ldots, s_l)) \times h(s_1 + \cdots + s_l)ds_1 \ldots ds_l < k_2

References

Footnotes

  1. ^ Khalil, H.K. (2001), Nonlinear Systems, Prentice Hall, ISBN 0130673897 
  2. ^ Vu, L.; Liberzon, D. (2005), "Common Lyapunov functions for families of commuting nonlinear systems", Systems & Control Letters 54 (5): 405–416, doi:10.1016/j.sysconle.2004.09.006, http://linkinghub.elsevier.com/retrieve/pii/S0167691104001598, retrieved 2008-07-18. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • José Luis Massera — (June 8, 1915–September 9, 2002) [citation|title=José Luis Massera (1915–2002)|last1=Broué|first1=M.|last2=Gonzalez Sprinberg|first2=G.|journal=Gazette des Mathématiciens|volume=94|page=8|year=2002|id=MathSciNet|id=2067167|url=http://smf.emath.fr/… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”