Electroceramics

Electroceramics

While ceramics have traditionally been admired for their mechanical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Such materials are now classified under Electroceramics, as distinguished from other functional ceramics such as advanced structural ceramics.

Historically, developments in the various subclasses of Electroceramics have paralleled the growth of new technologies. Examples include: Ferroelectrics - high dielectric capacitors, non-volatile memories; Ferrites-data and information storage; Solid Electrolytes - energy storage and conversion; Piezoelectrics - sonar; Semiconducting Oxides - environmental monitoring. Recent advances in these areas are described in the [http://www.ingentaconnect.com/content/klu/jecr Journal of Electroceramics] .

Dielectric ceramics

Dielectric materials used for construction of ceramic capacitors include zirconium barium titanate, strontium titanate (ST), calcium titanate (CT), magnesium titanate (MT), calcium magnesium titanate (CMT), zinc titanate (ZT), lanthanum titanate (TLT), and neodymium titanate (TNT), barium zirconate (BZ), calcium zirconate (CZ), lead magnesium niobate (PMN), lead zinc niobate (PZN), lithium niobate (LN), barium stannate (BS), calcium stannate (CS), magnesium aluminium silicate, magnesium silicate, barium tantalate, titanium dioxide, niobium oxide, zirconia, silica, sapphire, beryllium oxide, and zirconium tin titanate

Some piezoelectric materials can be used as well; the EIA Class 2 dielectrics are based on mixtures rich on barium titanate. In turn, EIA Class 1 dielectrics contain little or no barium titanate.

Electronically conductive ceramics

Indium tin oxide (ITO)

Fast ion conductor ceramics

Yttria-stabilized zirconia (YSZ), gadolinium doped ceria (GDC), lanthanum strontium gallium manganite (LSGM)

Piezoelectric and ferroelectric ceramics

Commercially used piezoceramic is primarily lead zirconate titanate (PZT). Barium titanate (BT), strontium titanate (ST), quartz, and others are also used.

See .

Magnetic ceramics

References

* [http://electroceramics.mit.edu/about.htm The Electroceramics and Crystal Physics Group at MIT]

See also

* Ceramic
* Strontium titanate
* Barium titanate
* Lead zirconate titanate


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • electroceramics —       category of advanced ceramic materials that are employed in a wide variety of electric, optical, and magnetic applications. In contrast to traditional ceramic products such as brick and tile, which have been produced in various forms for… …   Universalium

  • conductive ceramics — Introduction       advanced industrial materials that, owing to modifications in their structure, serve as electrical conductors.       In addition to the well known physical properties of ceramic materials hardness, compressive strength,… …   Universalium

  • magnetic ceramics — Introduction       oxide materials that exhibit a certain type of permanent magnetization called ferrimagnetism. Commercially prepared magnetic ceramics are used in a variety of permanent magnet, transformer, telecommunications, and information… …   Universalium

  • optical ceramics — Introduction       advanced industrial materials developed for use in optical applications.       Optical materials derive their utility from their response to infrared, optical, and ultraviolet light. The most obvious optical materials are… …   Universalium

  • Niobium — zirconium ← niobium → molybdenum V ↑ Nb ↓ Ta …   Wikipedia

  • Effet piézo-électrique — Piézoélectricité Illustration du comportement d’une pastille piézoélectrique : la contrainte appliquée crée un signal électrique. La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se… …   Wikipédia en Français

  • Piezoelectricite — Piézoélectricité Illustration du comportement d’une pastille piézoélectrique : la contrainte appliquée crée un signal électrique. La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se… …   Wikipédia en Français

  • Piezoélectricité — Piézoélectricité Illustration du comportement d’une pastille piézoélectrique : la contrainte appliquée crée un signal électrique. La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se… …   Wikipédia en Français

  • Piezzo-électrique — Piézoélectricité Illustration du comportement d’une pastille piézoélectrique : la contrainte appliquée crée un signal électrique. La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se… …   Wikipédia en Français

  • Piezzoélectricité — Piézoélectricité Illustration du comportement d’une pastille piézoélectrique : la contrainte appliquée crée un signal électrique. La piézoélectricité (du grec piézein presser, appuyer) est la propriété que possèdent certains corps de se… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”